Service manual

DISC BRAKE ModulX DB22, DB22LT, DB19
• Use appropriate spare parts documentation when obtaining spare parts.
• Use only genuine Haldex spare parts in repairs.
• Haldex reserves the right to make changes in the interest of technical progress without prior notice.
• The contents of this manual are not legally binding.
• No part of this publication may be reproduced, copied or translated without the prior permission of Haldex Brake Products AB.
• This edition supersedes all previous editions of the same documentation and renders them invalid.
• In case of a dispute between language versions, the English original has priority.
Introduction

The Haldex disc brake is designed to provide high performance coupled with low weight, durability and a minimum number of wearing parts. Floating, two-piece callipers are used. Brake pad wear is compensated for by an automatic clearance adjustment mechanism. The mechanism, which is actuated by the brake chamber, presses the inner brake pad against the brake disc, which then causes the calliper to move (float) laterally, so that the outer brake pad also comes in contact with the brake disc. The calliper moves on slide pins. Where the disc brake also serves as a parking brake, the mechanism is actuated by a spring brake chamber.

Product identification

| Type and serial numbers are stamped on an identification plate fixed to the calliper. |
|---|---|
| 1. OEM/Haldex logo | 5. Haldex S/N 5150234 (example) |
| 2. OEM P/N (if required) | 5 = year, 2005 |
| 3. Haldex EC (origin) | 15 = week number. |
| 4. Haldex P/N xxxxx | 0234 = sequential number |
Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>DB19</th>
<th>DB22</th>
<th>DB22LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. brake chamber force</td>
<td>13,9 kN</td>
<td>13,9 kN</td>
<td>12,0 kN</td>
</tr>
<tr>
<td>Wheel size</td>
<td>19,5”-22,5”</td>
<td>22,5”</td>
<td>22,5”</td>
</tr>
<tr>
<td>Number of actuating pistons</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Number of thrust plates</td>
<td>2*</td>
<td>2*</td>
<td>2</td>
</tr>
<tr>
<td>Number of slide pins</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Hysteresis (of complete brake)</td>
<td><10%</td>
<td><10%</td>
<td><10%</td>
</tr>
<tr>
<td>Threshold force (for brake assembly)</td>
<td>50 N</td>
<td>50 N</td>
<td>50 N</td>
</tr>
<tr>
<td>Brake chamber stroke</td>
<td>>57 mm</td>
<td>>57 mm</td>
<td>>57 mm</td>
</tr>
<tr>
<td>Adjustment for excess clearance (see p. 5)</td>
<td>14,0%</td>
<td>14,0%</td>
<td>14,0%</td>
</tr>
<tr>
<td>Mechanical ratio</td>
<td>15,8:1</td>
<td>15,8:1</td>
<td>15,8:1</td>
</tr>
<tr>
<td>Max. adjustment capacity</td>
<td>52 mm</td>
<td>52 mm</td>
<td>52 mm</td>
</tr>
<tr>
<td>Pad thickness (friction material), new</td>
<td>22 mm</td>
<td>22 mm</td>
<td>22 mm</td>
</tr>
<tr>
<td>Pad backplate thickness</td>
<td>8 mm</td>
<td>8 mm</td>
<td>8 mm</td>
</tr>
<tr>
<td>Running clearance, brake pad to brake disc</td>
<td>0,6–1,2 mm</td>
<td>0,6–1,2 mm</td>
<td>0,6–1,2 mm</td>
</tr>
<tr>
<td>External diameter of brake disc max</td>
<td>377 mm</td>
<td>430 mm</td>
<td>430 mm</td>
</tr>
<tr>
<td>Brake disc thickness, new</td>
<td>45 mm</td>
<td>45 mm</td>
<td>45 mm</td>
</tr>
<tr>
<td>Effective radius</td>
<td>150 mm</td>
<td>173 mm</td>
<td>173 mm</td>
</tr>
<tr>
<td>Swept area, brake disc</td>
<td>1420 cm²</td>
<td>1860 cm²</td>
<td>1860 cm²</td>
</tr>
<tr>
<td>Lining area (per pad)</td>
<td>155 cm²</td>
<td>192 cm²</td>
<td>160 cm²</td>
</tr>
<tr>
<td>Grease</td>
<td>Haldex P/N89652</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sealant</td>
<td>Haldex P/N89653</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-seize compound</td>
<td>Haldex P/N81934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight, disc brake, approx.</td>
<td>31,2 kg</td>
<td>39,8 kg</td>
<td>31,5 kg</td>
</tr>
</tbody>
</table>

(Without brake disc/pads/chamber and wear sensor)

Wear sensor (PWS)
Wear indicator (PWI)

* Previous design 1 thrust plate

Tightening torques

For number references in () in the text which do not appear in this section, refer to the exploded view
(p. 101-102)

Bolts (22) for attaching disc brake (1) to the axle. DB 19, DB 22 and DB 22LT.

Follow the vehicle/axle manufacturers recommendations or follow the method described below:

Step 1: Tighten to **100±5Nm** (for all bolt sizes in the table below)

Step 2: Tighten according to degrees specified for actual bolt size in the table below:

<table>
<thead>
<tr>
<th>Angle tightening table</th>
<th>M16*</th>
<th>M18</th>
<th>M20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,0 mm</td>
<td>+70°</td>
<td>+70°</td>
<td>+80°</td>
</tr>
<tr>
<td>1,5 mm</td>
<td>+50°</td>
<td>+50°</td>
<td>+55°</td>
</tr>
<tr>
<td>2,0 mm</td>
<td>+35°</td>
<td>+35°</td>
<td>+40°</td>
</tr>
<tr>
<td>2,5 mm</td>
<td>–</td>
<td>+30°</td>
<td>+35°</td>
</tr>
</tbody>
</table>

* = *The bolt must not be re-used*

Example: Bolt M 16 x 1.5
Tighten to 100±5 Nm + 50°

<table>
<thead>
<tr>
<th></th>
<th>DB 19</th>
<th>DB 22</th>
<th>DB22LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolts (78) for calliper housing/bridge (Tors)</td>
<td>390± 20 Nm</td>
<td>560± 30 Nm</td>
<td>390± 20 Nm</td>
</tr>
<tr>
<td>Bolts (10) for slide pins (Torsx cylindrical)</td>
<td>220±20 Nm</td>
<td>220±20 Nm</td>
<td>220±20 Nm</td>
</tr>
<tr>
<td>Bolts (10) for slide pins (Torsx conical)</td>
<td>280±20 Nm</td>
<td>280±20 Nm</td>
<td>280±20 Nm</td>
</tr>
<tr>
<td>Pad retainer bolt (8)</td>
<td>45±5 Nm</td>
<td>45±5 Nm</td>
<td>45±5 Nm</td>
</tr>
<tr>
<td>Bolt (81) for PWS</td>
<td>5±1 Nm</td>
<td>5±1 Nm</td>
<td>5±1 Nm</td>
</tr>
<tr>
<td>Fixation nuts (27), brake chamber</td>
<td>180 ±20 Nm</td>
<td>180 ±20 Nm</td>
<td>180 ±20 Nm</td>
</tr>
</tbody>
</table>

Wear limits

<table>
<thead>
<tr>
<th></th>
<th>DB 19</th>
<th>DB 22</th>
<th>DB22LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pads (5), min. lining thickness</td>
<td>2 mm</td>
<td>2 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>Pads (5), max. uneven wear</td>
<td>1 mm</td>
<td>1 mm</td>
<td>1 mm</td>
</tr>
<tr>
<td>Brake disc, min. thickness</td>
<td>37 mm</td>
<td>37 mm</td>
<td>37 mm</td>
</tr>
<tr>
<td>Brake disc, max. wear per side</td>
<td>4 mm</td>
<td>4 mm</td>
<td>4 mm</td>
</tr>
<tr>
<td>Brake disc, max. lateral runout</td>
<td>0,5 mm</td>
<td>0,5 mm</td>
<td>0,5 mm</td>
</tr>
<tr>
<td>Brake disc, max. thickness variation</td>
<td>0,1 mm (DTV)</td>
<td>0,1 mm (DTV)</td>
<td>0,1 mm (DTV)</td>
</tr>
<tr>
<td>Carrier (3): max clearance to brake-pad (5) back plate short side (with new pad)</td>
<td>3,0 mm</td>
<td>3,0 mm</td>
<td>3,0 mm</td>
</tr>
<tr>
<td>Carrier (3): max clearance to brake-pad (5) back plate "bump" (with new pad)</td>
<td>2,0 mm</td>
<td>2,0 mm</td>
<td>2,0 mm</td>
</tr>
</tbody>
</table>
Description of operation

For number references in () in the text which do not appear in this section, refer to the exploded view (p. 104-105)

Actuation/release of brake

During braking, lever (44) is actuated by brake chamber (25/26). The inner section of lever (44) pushes the cross bar (41) axially towards the brake disc (A). The force is transferred from the cross bar (41) via adjustment sleeves (74/75), adjustment screws (35) and the thrust plate (28) to the inner brake pad (5). As the brake pad (5) comes into contact with the brake disc (A), the calliper (2) moves laterally on the slide pins (13) to allow the outer pad (5) to contact the brake disc (A). When the brake is released, the return spring (38) moves the cross bar (41) back to its rest position achieving the design clearance between the pads (5) and the brake disc (A).

Automatic adjustment

Adjustment is based on the clearance principle. The braking sequence is split into three phases: design clearance C, excess clearance Ce (which must be adjusted out), and the elasticity phase E. These phases take place when the brakes are actuated and released.

The lever’s (44) guide pin (44a) which is a part of the lever (44) controls the adjuster (54). The clearance between the lever’s guide pin (44a) and the slot in the adjuster housing (62) determines the clearance between the pads (5) and brake disc (A).

The adjuster (54) then turns the adjustment sleeve (74) via a claw coupling that has an internal thread in relation to the adjustment screw’s (35) external thread. Thrust plates (28) are attached to the adjustment screws (35) by circlips (29).

The adjustment screws (35) are prevented from rotating by a synchronization plate (84).

The second adjustment sleeve (75) is synchronised and driven by a gear mechanism which consists of gear wheels (77) attached to each of the two adjustment sleeves (74/75) plus an intermediate gear wheel. (Three gear wheels (77) in total).
Application

C - During the forward stroke through C, the design clearance between pads (5) and brake disc (A) is measured. The clearance between the lever’s guide pin (44a) and the slot in the adjuster housing (62) determines the magnitude of the forward stroke before the adjustment process begins.

Ce - If there is any clearance between the brake disc (A) and the pad (5) when the thrust plates (28) have moved axially through the design clearance C, the adjuster unit (54) rotates the adjuster sleeves (74/75). The adjustment screws (35) are held in position by the synchronisation plate (84) and in so doing are prevented from rotating. Turning the adjustment sleeves (74/75) in relation to the adjustment screws (35) removes a percentage share of the measured excess clearance Ce.

The rotational movement from the housing (62) is transferred in the adjuster (54) via an adjustment spring (63), companion sleeve (68), one-way friction spring (66), hub (67) for adjustment sleeves (74/75) that have threaded joints around the adjustment screws (35).

E - When the pads (5) come into contact with brake disc (A), the braking enters elasticity phase E, the torque rises and adjuster unit (54) stops adjusting. The continued rotational movement that now occurs in the adjuster (54) is allowed by the housing (62) being turned in relation to the adjustment spring (63).
Release

The first part of the return stroke is a combination of elasticity phase, E, and design clearance C. Any residual part of the return stroke is excess clearance, \(C_e \), which is adjusted out during subsequent braking. During the return stroke, return spring (38) ensures that cross bar (41) travels back.

\(C \) – On the way through the first stage of the return stroke, the brake torque decreases. The lever’s guide pin (44a) changes flank in the slot in the adjuster housing (62) = transfer of design clearance.

\(E \) – Corresponds to forward stroke movement through E. Adjuster unit housing (62), adjustment spring (63) and companion flange (68) are rotated in relation to the adjustment sleeve (74/75), which remains stationary. Movement between the companion flange (68) and the adjustment sleeve (74) is taken up by the one-way spring (66).

\(C_e \) – During the last part of the return stroke (corresponding to the movement of the forward stroke through \(C_e \)), rotational movement in adjuster unit (54) continues as described under E until mechanism (4) reaches its rest position.

The brake is now back in its rest position.
Tools

Special tools for Haldex disc brake.

For number references in () in the text which do not appear in this section, refer to the exploded view (p. 101-102)

Contents of tool kit Haldex P/N 81918.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P/N 81918</td>
<td>Complete tool kit including toolbox.</td>
</tr>
<tr>
<td>P/N 81920</td>
<td>Slide hammer (puller) for pads (5).</td>
</tr>
<tr>
<td>P/N 81921</td>
<td>Expansion drift for slide bearing (14).</td>
</tr>
<tr>
<td>P/N 81922</td>
<td>Mounting tools for bellows (12), for slide pins in the calliper.</td>
</tr>
<tr>
<td>P/N 87833</td>
<td>Tool for fitting seal (32) to adjuster screw (35) in cover (33) (MK II/MK III).</td>
</tr>
<tr>
<td>P/N 89778</td>
<td>Tool for fitting seal (32) to adjuster screw (35) in cover (33) (MK IV, ModulX).</td>
</tr>
<tr>
<td>P/N 89779</td>
<td>Tool for fitting seal (32) to adjuster screw (35) (MK IV, ModulX).</td>
</tr>
<tr>
<td>P/N 81927</td>
<td>Protective cover for brake chamber opening in calliper (2).</td>
</tr>
<tr>
<td>P/N 81928</td>
<td>Support plug (used in conjunction with 87833), and tool for fitting radial seal (69) to adjustment shafts (55) (MK II/MK III).</td>
</tr>
<tr>
<td>P/N 89780</td>
<td>Tool for fitting radial seal (69) to adjustment shafts (55) (MK IV, ModulX).</td>
</tr>
<tr>
<td>P/N 81919</td>
<td>Toolbox.</td>
</tr>
<tr>
<td>P/N 81933</td>
<td>Torx E18 socket for slide pin bolts (10).</td>
</tr>
<tr>
<td>P/N 89781</td>
<td>Torx E10 socket for bolts (18) for mechanism (4) (MK IV, ModulX).</td>
</tr>
<tr>
<td>P/N 89936</td>
<td>Tool for fitting clips (29) (MK IV, ModulX).</td>
</tr>
<tr>
<td>P/N 90797</td>
<td>Torx E20 socket for bolts (78) for calliper (2), DB 19 and DB22LT.</td>
</tr>
<tr>
<td>P/N 90798</td>
<td>Torx E24 socket for bolts (78) for calliper (2), DB 22</td>
</tr>
</tbody>
</table>

Spare parts

P/N 87857 | Spare parts kit for P/N 81920 |

P/N = Part Number
Tool kit P/N 81918

81920

81921

81922

87833

81933

81927

81928

89778

89779

89781

89780

89936

81919

90797

90798
Instructions

General instructions

- Always follow the vehicle manufacturer's safety instructions when working on the vehicle.
- Follow the vehicle manufacturer's instructions for jobs not described in this manual.
- Comply with local safety regulations.
- Work must be carried out by trained personnel.
- Near-accidents are warning signs that must be respected to prevent injury!
- Brake pad wear and brake pad machining produce very fine dust/fibres which can cause lung damage. Wear respiratory protection in order to avoid inhaling brake dust particles which can be hazardous to your health!
- Use the specified type of dirt removal equipment or a vacuum cleaner to clean surfaces. Do not use compressed air.
- Ensure that there is sufficient ventilation at the workplace.
- Always use approved equipment such as extractors, protective clothing/masks/gloves/shoes/goggles.
- Sudden release of tensioned springs, e.g. the spring brake part of the brake chamber or the disc brake return spring, may cause injury.
- Use recommended tools only.
- Release pressure from lines and components before opening them.
- Chock at least one of the vehicle's axles to prevent involuntary movement of the vehicle.
- After carrying out work, always finish by checking operation/test driving to ensure that the brakes are working correctly.

⚠️ **Means that special attention is required!**

Safety

Installation

The disc brake must not be installed or treated in such a way that exposes it to thermal, mechanical or chemical influences that risk causing reduced braking effect or damage to vital components in the brakes. These influences/damage may result in a shortened service life for the disc brake and its components, reduced brake effect or at worst total brake failure.

Adjustment of control system/valves

Before enter the vehicle into service

Prior to use a vehicle for the first time the disc brake operating systems must be checked and adjusted (if necessary) in accordance with the relevant brake calculations. Contact the vehicle manufacturer for information. Failure to follow these instructions may accelerate the wear to your brake pads and may cause damage/repeated damage to the disc brake, axle and/or wheel brake components.
Replacing spare parts

Only use Haldex original spare parts when replacing. Always use spare parts that are approved for the vehicle, axle or disc brake. Following replacement of any essential components or spare parts in the disc brake operating system (such as brake valves or control units), the disc brake operating system must also be checked and adjusted (if necessary) in accordance with the relevant braking calculations.

Failure to follow these instructions may accelerate the wear to your brake pads and may cause damage/repeated damage to the disc brake, axle and/or wheel brake components.

Brake force distribution

Brake adjustment for truck/tractor and trailers must always be carried out on new vehicles following a running in distance of between 3,000 - 5,000 Km. Brake adjustment must also be carried out during repairs/changing spare parts when heating/overheating has damaged the axle/brake components (e.g. rubber components, hub/wheel bearings and brake disc). Failure to follow these instructions may accelerate the wear to your brake pads and may cause damage/repeated damage to the axle and/or wheel brake components.

See section "Brake force distribution" for further instructions.

Brake chamber

Moisture/water ingress into the disc brake’s mechanism housing may affect the function of the disc brake and as a result shorten its life.

Therefore, to prevent water ingress it is important that the disc brake chamber is of the correct design and that the seal between the brake chamber and disc brake mating surface is perfect/correct.

It is also important for the disc brake’s function that the brake chamber housing is correctly ventilated. As a minimum, the drain hole facing downwards must be open. Other drain plugs can remain in position in the brake chamber housing. If all the plugs remain fitted, the disc brake will not operate correctly.

Recycling

When replacing the disc brake or parts thereof, the components removed must be recycled/destroyed in compliance with applicable environmental legislation, regulations and provisions.

Cleaning

For the disc brake to function correctly it is important to ensure it is kept clean and that its normal movements are not restricted by mud, ice, snow, objects etc.

To avoid causing damage or displacing hoses, seals and other components when cleaning/washing/removing snow/ice it is important to take care when using chemicals, high pressure cleaners or cleaning tools (ex. glazing knife, brush etc.).

Damage may cause direct brake failure or damp/dirt penetration resulting in malfunction/shortening of the service life of the disc brake.
Surface finishing for disc brake

Painting

The disc brake (1) can be finished with paint that has trade approval for this purpose (automotive paint). Care must be taken to ensure that the paint layer does not cause damage and/or restrict the natural movement or operation of the disc brake.

All contact surfaces, friction and rubber parts must therefore be protected or masked. The mechanism (4) must be protected from the ingress of paint (e.g. if brake chamber (25/26) is not fitted).

The following areas must not be painted:

Rubber bellows (12/32), lip seals (69), plug (15) brake pads (5) (complete), the swept area of the disc, disc brake (1) mounting surfaces to axle/brake chamber (25/26) and all bolted connections.

Shot-Blasting

If the vehicle is shot blasted, all rubber parts and pads on the disc brake must be protected. The brake chamber (or any protective parts that have a similar sealing function) must be fitted. The shipping seal fitted to the brake chamber opening on a new disc brake does not provide adequate protection during shot-blasting. (Do not forget to follow the recommendations of the brake chamber manufacturer!). The disc brake must be thoroughly cleaned after blasting to ensure that its natural movement is not obstructed by remnants of shot-blasting material. Check seals and rubber parts to make sure they have not been damaged. Also refer to the axle manufacturer’s instructions.

Failure to follow the above instructions could compromise safety and/or reduce the life of the disc brake and its components.

Brake force distribution

It is important that the distribution of brake force (between axles/vehicles) in a vehicle combination is adapted so that the brake force for each axle/vehicle is proportioned in accordance with the legally applied braking calculations.

If brake force is not correctly distributed it can lead to excessive braking of a vehicle and/or one or more axles in the combination. This can result in overheating, accelerated wear and damage to the disc brake, pads, brake discs, tyres and wheel components.

Before a vehicle is entered into service it must be set up according to the specified values in the relevant brake calculations. After the pads/brake discs have been run in for a period of around 3,000-5,000 km the brake force distribution between the truck/tractor and trailer may require adjustment.

Contact the vehicle supplier for information on the appropriate action.

Following replacement of any essential components or spare parts in the disc brake operating system (such as brake valves or control units), the disc brake operating system must also be checked and adjusted (if necessary) in accordance with the relevant braking calculations.

Failure to follow these instructions may cause damage/repeated damage to the disc brake, axle and/or wheel brake components.
Inspection/checks/adjustment

For number references in () in the text which do not appear in this section, refer to the exploded view (p. 104-105).

Inspection intervals

<table>
<thead>
<tr>
<th>Adjustment</th>
<th>Before starting to use vehicle</th>
<th>After 3,000-5,000 km</th>
<th>Every 3 months</th>
<th>Every 12 months</th>
<th>If parts are replaced in operating system</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C = Check</td>
<td>C/A*</td>
<td>C/A*</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>A = Adjustment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I = Inspection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* = With wheels fitted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>** = With wheels removed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusting the operating system/valves.</td>
<td>C/A*</td>
<td>C/A*</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Braking distribution between tractor/trailer.</td>
<td>C/A*</td>
<td>C/A*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety check</td>
<td>C*</td>
<td>I*</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Lining wear, visual.</td>
<td></td>
<td>I*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake disc, visual.</td>
<td></td>
<td>I*</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Function check</td>
<td>C**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Brake pads (5).</td>
<td>C**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Brake disc.</td>
<td>C**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Slide function.</td>
<td>C**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Play in slide pins (13).</td>
<td>C**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Bellows (12) for slide pins.</td>
<td>C**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Bellows(32) for adjustment screws.</td>
<td>C**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Inspection intervals specified in the table above are maximum intervals. Depending on the vehicle application, type of driving, adjustment to the vehicle manufacturer's service/inspection intervals etc., there may be a need for more frequent inspections.

⚠️ **Do not undo the bolts (78) that hold the calliper housing (2a) and calliper bridge (2b) together!**

⚠️ **Read the safety instructions carefully. See the section entitled "Safety". The vehicle manufacturer's instructions should also be followed.**

⚠️ **Clean the disc brakes, removing any dirt and dust. Use dust removal equipment or a vacuum cleaner but do not use compressed air - inhaling dust particles may be harmful to your health! See "Cleaning" for instructions.**

⚠️ **If the disc brake is equipped with a parking brake function, ensure that the spring brake chamber is fully disengaged and mechanically secured in the released position.**

See the vehicle manufacturer's instructions.
Inspection

Instructions

Daily safety check

Check that the brakes function properly before driving and they work effectively and smoothly.

Check that the service and parking brake function is effective by trying to drive the vehicle with the service and parking brakes applied.

Contact the service workshop immediately if there is any sign of reduced performance or the brakes do not work properly.

Inspection of pad wear, visual

An indication on the degree of pad wear can be obtained (without removing the wheels) by examining the position of pointer A on the brake calliper (2) in relation to carrier (3). Methods/specifications are the same for both DB19 and DB22. See method descriptions with and without indicator pin (85) below.

With indicator pin (85): Examine the position of pointer A in relation to the tip of the indicator pin (85). See Fig.1.

Without indicator pin (85): Use a rigid millimetre scale ruler to measure the distance between carrier (3) and indicator A. New pads (5) 27mm. Worn out pads (5) 47mm. See Fig.2.

NB!

This only indicates the degree of wear of the outer pad (5)!

To accurately determine the degree of pad wear see Inspection/checks/adjustment, 'Checking pad wear' (with pads (5) removed).
Inspection of brake discs, visual.

Visually inspect the inside and outside faces of the brake discs for damage, wear and cracks. (The outside face of the brake discs can be inspected through the holes in the wheel or by using a mirror and looking from the inside of the wheel outwards). To assess any damage see 'Cracks in the brake disc'.

In case of doubt concerning the extent of the damage, remove the wheel to allow closer inspection. Refer also to the axle/vehicle manufacturer’s instructions.

If there are signs of overheating on the brake disc, inspect the rubber bellows on the disc brake (12 and 32). (Grease escaping from the wheel hub can also be a sign of overheating). See 'Function test' and 'Brake force distribution' for more information on checking the operation of the disc brake and adjusting the operating system and brake force if overheating has occurred.

The checks outlined in subsequent sections should be conducted with brake pads (5) removed. See section entitled 'Replacing brake pads' for instructions regarding the removal of brake pads.

Checking pads

Measure the distance from backplate (A) to wear surface (B) of pad (5) in four places, as shown.

Minimum permitted lining thickness (friction material) 2 mm. (New pads, lining thickness = 22 mm.) Replace pads if they are worn out or if they are expected to be before the next service.

Also check that pads (5) are evenly worn, max. 1 mm uneven wear (measured at four points). In the event of uneven wear, check the sliding function of calliper (2) on slide pins (13). See 'Checking slide function' (in this section).

Also check for dirt between the thrust plates (28) and pads (5), and that the thrust plates (28) are adjusted evenly during the function test. (Both adjustment screws (35) must be adjusted by the same amount). See 'Function test' in this section for procedure.

NB!

Driving with light braking may result in increased wear on the inner brake pad.
Checking brake disc

Measure the thickness of brake disc (A) using slide caliper. If brake disc (A) has a wear ridge, the measurement can be performed using two spacers (B) (e.g. 5 mm thick flat washers). Reduce the measured dimension by the total thickness of the two spacers (B). Min. thickness of brake disc 27 mm. In a ventilated disc, max. wear is 4 mm per side. Brake disc (A) must be replaced if the wear limits have been exceeded.

![Diagram of checking brake disc](image)

Lateral runout

Check/adjust wheel bearing play in accordance with the vehicle manufacturer's instructions.

Measure the lateral runout of brake disc (A) by attaching a magnetic stand complete with a dial gauge on carrier (3). Point the tip of the dial gauge towards the side of brake disc (A) and rotate the brake disc > one turn. Max lateral runout 0.5 mm.

NB! Do not include wheel bearing play in the measurement!

![Diagram of lateral runout](image)

Cracks in the brake disc

Check the brake disc (A) for cracks and wear tracks. Also refer to the axle/vehicle manufacturer's instructions.

If action is required, see the axle/vehicle manufacturer's instructions for dressing/replacing the brake disc.
Checking slide function

During operational service, it is not necessary to measure slide pin play to confirm proper function of the brake. Instead, a simple slide function check should be performed.

The caliper must be free to slide on the slide pins as brake actuation and pad wear occur. If the caliper moves freely on the slide pins, then the caliper sliding function is acceptable. If the caliper does not move freely on the slide pins, then refer to the Fault Finding section of this Service Manual to help determine the root cause.

The recommended procedure for checking slide function of the disc brake caliper in operational service is as follows:

1. Take all safety precautions; block wheels, remove wheel assembly;
2. Remove brake pads;
3. Grasp the brake caliper by hand so that it can be moved forwards and backwards in line with the axle;
4. By hand move the brake caliper assembly as described in step 3 to ensure that the caliper moves freely;
5. If the caliper moves freely, sliding function is acceptable. If the caliper does not move freely it is necessary to determine root cause (Refer to the Fault Finding section of Service Manual).
Checking slide pins bellows

Check each of the two protection caps (9) and six bellows (12). Also check the two protection cups (71).

If there are signs of cracks or other damage, the protection cups (71), bellows (12) and protection caps (9) must be replaced!

If any action is necessary, see section on "Replacing slide pins, slide bearings and bellows".

Checking adjustment screws bellows

Turn the adjustment shaft (55) using an 8 mm ring spanner until thrust plate (28) is 45-50 mm out from the cover (33). IMPORTANT! thrust plate (28) max. 50 mm out from cover (33)!

Inspect protection springs (30) (protection springs (30) are optional). Now pull back the protection springs (30), and inspect the bellows (32).

If there is any sign of cracks or other damage, the protection springs (30)/bellows (32) must be replaced!

Turn adjustment shaft (55) back fully. Check that the protection springs (30) are correctly seated so that they are not crushed or damaged!

If any action is necessary, see section on "Replacing adjustment screw bellows".

The checks outlined in this section should be conducted with brake pads (5) removed. See section entitled 'Replacing brake pads' for brake pad fitting instructions, and the section entitled 'Initial setting'.
Function test

For number references in () in the text which do not appear in this section, refer to the exploded view (p. 104-105)

- Lift up and support the axle in accordance with the vehicle manufacturer's instructions.

![Important]

Read the safety instructions carefully. See the section entitled 'Safety'.

The vehicle manufacturer's instructions should also be followed.

- Check that the wheel can be turned freely.
- Remove plug (15)
- Release the brake adjustment by using an 8 mm ring spanner to turn the adjustment shaft (55) 3/4 of a turn anticlockwise.

Note! Do not tighten in case the adjustment reaches fully dead-adjusted position - the automatical adjustment may not work!

Leave the ring spanner in position on the adjustment shaft (55). Actuate the brakes five times. The spanner must move on each actuation, showing that the automatic adjustment is working.

NB! The ring spanner must be allowed to move unhindered!

If the ring spanner moves back and forth or not at all, the adjustment device is defect and the calliper housing (2a) must be replaced.

See section entitled “Replacing the calliper housing (2a) (including mechanism (4))”.

Implement initial settings. See section on "Initial settings".

Checking the clearance: only required for an approximation of the clearance between the brake disc (A) and the brake pads (5).

General clearance check.

After the function test has been completed, activate the brakes until the ring spanner no longer moves. Then turn the ring spanner clockwise by hand until the brake pads (5) touch the brake disc (A). If the spanner can be turned between 1/8 and 1/4 turn, the play is within the specified tolerance. (See Specifications' for data). Then undo the adjustment shaft (55) 1/4 turn anticlockwise.
Initial setting

Check that the brake disc (A) can rotate freely.

Using an 8 mm ring spanner, turn the adjustment shaft (55) clockwise until both pads (5) touch brake disc (A). Then turn it 1/4 turn anticlockwise to obtain a basic clearance between pads (5) and brake disc (A). Check that brake disc can be turned freely. Remove the ring spanner.

IMPORTANT!

Never use an impact wrench or suchlike to turn the adjustment shaft (55) as this may damage the adjustment mechanism!

Check the radial seal (69) for wear and damage. Clean/replace if required.

See replacement instructions in the section on “Additional work”.

Installing the plug (15)

Fitting the plug (15) (where applicable): Lubricate the inside and outside of the plug (15) and the recess for the adjustment shaft, using grease P/N 89652.

Then fit the plug (15) for the adjustment shaft (55). Check that the plug (15) for the adjustment shaft (55) is pushed fully into place. (See diagram.)

To provide the correct clearance between the brake disc (A) and brake pads (5) the mechanism will make the final adjustment itself when the brakes are applied the next few times.

Fit wheels (if removed), lower the axle, remove the support and the wheel chocks in accordance with the vehicle manufacturer’s instructions.
Lubrication

IMPORTANT!
Read the safety instructions carefully. See the section entitled 'Safety'.
The vehicle manufacturer's instructions should also be followed.

General

Use specified lubricant only!

To guarantee the function of the disc brake it is important to use the specified lubricant only. Apply the correct amount of lubricant - do not apply excessive quantities to avoid lubricant being dispersed or causing damage during the natural movements of the brake (e.g. on the friction surface of the pads, on the disc brake, in the seals and suchlike).

Mechanism

Before fitting the brake chamber (25/26), lubricate the recess in the lever (44) where the brake chamber (25/26) pushrod fits. Mechanism (4) is lubricated in the factory and, as such, does not normally require further lubrication. Where necessary, for example lubricating the adjustment screws, see section on "Specifications" for selection of lubricant.
Service

Replacing pads

For number references shown within () that do not appear in this section, see the exploded view (p. 104-105)

- Always replace pads (5) on both sides of the axle at the same time.
- Do not replace with pads of a lining quality that is different to that intended for the installation! (see current spare parts catalogue)

Do not undo the bolts (78) that hold the calliper housing (2a) and calliper bridge (2b) together!

IMPORTANT!

Follow the safety instructions. See the section entitled 'Safety'.
The vehicle manufacturer's instructions should also be followed.

- Follow the vehicle manufacturer’s instructions to chock the wheels on an axle which is not to be raised.
- Lift and support the axle, remove the wheels in accordance with the vehicle manufacturer's instructions.

Clean the brakes, removing any dirt and dust. Use dust removal equipment or a vacuum cleaner but do not use compressed air - inhaling dust particles may be hazardous to your health! See "Cleaning" for instructions.

If the disc brake is equipped with a parking brake function, ensure that the spring brake chamber is fully disengaged and mechanically secured in the released position.

See the vehicle manufacturer's instructions for more information.
Removing pads

Using an 8mm ring spanner, release the brake adjustment by turning the adjustment shaft (55) anticlockwise until the thrust plate (28) is fully retracted.

IMPORTANT!

Never use an impact wrench or suchlike to turn the adjustment shaft (55) as this may damage the adjustment mechanism!

IMPORTANT!

When releasing the brake adjustment it is imperative that the protection springs (30) are free from dirt, dust and possible obstruction, and positioned properly in the cover (33). This to ensure that the thrust plates (28) are free to retract fully without hinderance. Retracting with an incorrectly positioned or deaned protection spring could cause damage to the brake adjustment mechanism. Unless the thrust plates (28) are fully retracted it will not be possible to fit new pads (5).

The stop at fully retracted thrust plates (28) must be distinct!

Do not tighten in this position!

Remove the bolt (8), pad retainer (7) and pad springs (6).

PWI (Pad Wear Indicator)
If the brake unit has a PWI (Pad Wear Indicator) fitted then reference Pad Wear Indicator (PWI) work instruction within the Additional Work section of this manual.

If the brake unit has a PWS (Pad Wear Sensor) fitted then reference Pad Wear Sensor (PWS) work instruction within the Additional Work section of this manual.

Remove pad springs (6). Remove pads (5).

If needed, use special tool P/N81920 to remove pads (5).

Clean the pad (5) contact surfaces on thrust plates (28), in calliper (2) and on carrier (3) with a wire brush. Do not grind!
Checking slide function

During operational service, it is not necessary to measure slide pin play to confirm proper function of the brake. Instead, a simple slide function check should be performed.

The caliper must be free to slide on the slide pins as brake actuation and pad wear occur. If the caliper moves freely on the slide pins, then the caliper sliding function is acceptable. If the caliper does not move freely on the slide pins, then refer to the Fault Finding section of this Service Manual to help determine the root cause.

The recommended procedure for checking slide function of the disc brake caliper in operational service is as follows:

1. Take all safety precautions; block wheels, remove wheel assembly;
2. Remove brake pads;
3. Grasp the brake caliper by hand so that it can be moved forwards and backwards in line with the axle;
4. By hand move the brake caliper assembly as described in step 3 to ensure that the caliper moves freely;
5. If the caliper moves freely, sliding function is acceptable. If the caliper does not move freely it is necessary to determine root cause (Refer to the Fault Finding section of Service Manual).
Checking slide pins bellows.

Check each of the two protection caps (9) and six bellows (12). Also check the two protection cups (71).

If there are signs of cracks or other damage, the protection cups (71), bellows (12) and protection caps (9) must be replaced!

If any action is necessary, see section on "Replacing slide pins, slide bearings and bellows".

Checking adjustment screws bellows.

Turn the adjustment shaft (55) using an 8 mm ring spanner until thrust plate (28) is 45-50 mm out from the cover (33). IMPORTANT! thrust plate (28) max. 50 mm out from cover (33)!

Inspect protection springs (30) (protection springs (30) are optional). Now pull back the protection springs (30), and inspect the bellows (32).

If there is any sign of cracks or other damage, the protection springs (30)/bellows (32) must be replaced!

Turn adjustment shaft (55) back fully. Check that the protection springs (30) are correctly seated so that they are not crushed or damaged!

If any action is necessary, see section on "Replacing adjustment screw bellows".
Replacing brake pads

Checking brake disc

Measure the thickness of brake disc (A) using slide caliper. If brake disc (A) has a wear ridge, the measurement can be performed using two spacers (B) (e.g. 5 mm thick flat washers). Reduce the measured dimension by the total thickness of the two spacers (B). Min. thickness of brake disc 27 mm. In a ventilated disc, max. wear is 4 mm per side. Brake disc (A) must be replaced if the wear limits have been exceeded.

Lateral runout

Check/adjust wheel bearing play in accordance with the vehicle manufacturer's instructions.

Measure the lateral runout of brake disc (A) by attaching a magnetic stand complete with a dial gauge on carrier (3). Point the tip of the dial gauge towards the side of brake disc (A) and rotate the brake disc > one turn. Max lateral runout 0.5 mm.

NB! Do not include wheel bearing play in the measurement!

Cracks in the brake disc

Check the brake disc (A) for cracks and wear tracks. Also refer to the axle/vehicle manufacturer’s instructions.

If action is required, see the axle/vehicle manufacturer’s instructions for dressing/replacing the brake disc.
Fitting brake pads

Make sure that the adjustment shaft (55) is fully retracted using an 8 mm ring spanner. Ensure that the protection springs (30) (protection springs (30) are optional) are positioned correctly so that they are not jammed/damaged or interfere with the backward travel of the thrust plates (28). Check that the contact surfaces of the pads (5) in the disc brake are free from dirt.

Fit the brake pads (5) and on one side of each pad with a feeler gauge check the clearance between the side of the pad and the carrier is greater than 0.5mm over the whole surface area. If the clearance is less than 0.5, remove the pads and clean the surfaces. Then refit the pads and measure again, repeat this process as required until the clearance is greater than 0.5mm.

Ensure that the friction material faces the brake disc!

If the brake unit has a PWI (Pad Wear Indicator) fitted then reference Pad Wear Indicator (PWI) work instruction within the Additional Work section of this manual.

If the brake unit has a PWS (Pad Wear Sensor) fitted then reference Pad Wear Sensor (PWS) work instruction within the Additional Work section of this manual.

Fit the pad springs (6), pad retainer (7) and secure with a bolt (8). Tightening torque 45±5Nm
Initial setting

Check that the brake disc (A) can rotate freely.

Using an 8 mm ring spanner, turn the adjustment shaft (55) clockwise until both pads (5) touch brake disc (A). Then turn it 1/4 turn anticlockwise to obtain a basic clearance between pads (5) and brake disc (A). Check that brake disc can be turned freely. Remove the ring spanner.

IMPORTANT!

Never use an impact wrench or suchlike to turn the adjustment shaft (55) as this may damage the adjustment mechanism!

Check the radial seal (69) for wear and damage. Clean/replace if required.

See replacement instructions in the section on “Additional work”.

Installing the plug (15).

Fitting the plug (15) (where applicable): Lubricate the inside and outside of the plug (15) and the recess for the adjustment shaft, using grease P/N 89652.

Then fit the plug (15) for the adjustment shaft (55). Check that the plug (15) for the adjustment shaft (55) is pushed fully into place. (See diagram.)

To provide the correct clearance between the brake disc (A) and brake pads (5) the mechanism will make the final adjustment itself when the brakes are applied the next few times.
Disc brake with spring brake chamber

Make sure that there is sufficient air in the system (min. 6 bar).

Apply air pressure to the parking brake (min. 6 bar).

Uncage the parking brake spring.

See the vehicle manufacturer's instructions for more information.

With the service brake engaged and, where appropriate, with the parking brake released, check the brake chambers, hoses and connections in respect for leaks or damage.

Fit the wheels as per the vehicle manufacturer’s instructions.

NB!

Check that the contact surface of the rim and hub are clean and free from distortion. Follow the vehicle manufacturer’s instructions for fitting and tightening torques!

⚠️ Check that the brake hoses do not foul during full wheel articulation.

Check the wheel so it turns freely with the parking brake released.

Remove the axle support and the wheel chocks and lower the axle in accordance with the vehicle manufacturer's instructions.
Replacing disc brake

For number references shown within () that do not appear in this section, see the exploded view (p. 104-105)

IMPORTANT!

Follow the safety instructions. See the section entitled 'Safety'.

The vehicle manufacturer's instructions should also be followed.

- Follow the vehicle manufacturer's instructions to chock the wheels on an axle which is not to be raised.
- Lift and support the axle, remove the wheels in accordance with the vehicle manufacturer's instructions.

Do not undo the bolts (78) that hold the calliper housing (2a) and the calliper bridge (2b) together!

Clean the brakes, removing any dirt and dust. Use dust removal equipment or a vacuum cleaner but do not use compressed air - inhaling dust particles may be hazardous to your health! See "Cleaning" for instructions.

If the disc brake is equipped with a parking brake function, ensure that the spring brake chamber is fully disengaged and mechanically secured in the released position.

See the vehicle manufacturer's instructions for more information.
Removing pads

Using an 8 mm ring spanner, release the brake adjustment by turning the adjustment shaft (55) anticlockwise until the adjustment device is fully retracted.

IMPORTANT!
Never use an impact wrench or suchlike to turn the adjustment shaft (55) as this may damage the adjustment mechanism!

IMPORTANT!

When releasing the brake adjustment it is imperative that the protection springs (30) are free from dirt, dust and possible obstruction, and positioned properly in the cover (33). This to ensure that the thrust plates (28) are free to retract fully without hindrance. Retracting with an incorrectly positioned or deaned protection spring could cause damage to the brake adjustment mechanism. Unless the thrust plates (28) are fully retracted it will not be possible to fit new pads (5).

The stop at fully retracted thrust plates (28) must be distinct!

Do not tighten in this position!

Remove the bolt (8), pad retainer (7) and pad spring (6).

PWI (Pad Wear Indicator)
If the brake unit has a PWI (Pad Wear Indicator) fitted then reference Pad Wear Indicator (PWI) work instruction within the Additional Work section of this manual.

If the brake unit has a PWS (Pad Wear Sensor) fitted then reference Pad Wear Sensor (PWS) work instruction within the Additional Work section of this manual.

Remove the pads (5)

If needed, use special tool **P/N 81920** to remove the brake pads (5).
Checking brake disc

Measure the thickness of brake disc (A) using slide caliper. If brake disc (A) has a wear ridge, the measurement can be performed using two spacers (B) (e.g. 5 mm thick flat washers). Reduce the measured dimension by the total thickness of the two spacers (B). Min. thickness of brake disc 27 mm. In a ventilated disc, max. wear is 4 mm per side. Brake disc (A) must be replaced if the wear limits have been exceeded.
Lateral runout

Check/adjust wheel bearing play in accordance with the vehicle manufacturer’s instructions.

Measure the lateral runout of brake disc (A) by attaching a magnetic stand complete with a dial gauge on carrier (3). Point the tip of the dial gauge towards the side of brake disc (A) and rotate the brake disc > one turn. Max lateral runout 0.5 mm.

NB! Do not include wheel bearing play in the measurement!

Cracks in the brake disc

Check the brake disc (A) for cracks and wear tracks. Also refer to the axle/vehicle manufacturer’s instructions.

If action is required, see the axle/vehicle manufacturer’s instructions for dressing/replacing the brake disc.

<table>
<thead>
<tr>
<th>Crack length</th>
<th>Acceptable cracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 75% of brake disc width</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crack length</th>
<th>Unacceptable cracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 75% of brake disc width</td>
<td></td>
</tr>
</tbody>
</table>

Removing brake chamber

If the disc brake is fitted with a spring brake chamber (26) - make sure that it is mechanically secured in the released position. See the vehicle manufacturer’s instructions for more information.

Remove the two nuts (27) holding brake chamber (25/26).

Remove brake chamber (25) / spring brake chamber (26) and support it so that hoses and connections (A) are not damaged.
Removing disc brake

Loosen the disc brake’s retaining bolts (22).

Fit pad retainer (7) and secure with bolt (8). Connect a lifting strap and a suitable lifting device.

Remove the retaining bolts (22), lift out the disc brake.

Remove the lifting strap, bolt (8) and pad retainer (7).

Installing disc brake

Check that the surfaces for fitting to the axle, brake chamber (25/26) and pads (5) are clean.

Fit pad retainer (7) and secure with bolt (8). Connect a lifting strap and a suitable lifting device.

Lift the disc brake into position.

Follow the vehicle/axle manufacturers recommendations for fitting/tightening bolts (22) or follow the method as described below:

Lubricate the retaining bolts springly (22) on the threads and under the bolt heads with oil.

Always use new bolts (22) for sizes marked * in the table below.

Fit and screw home one bolt (22) on each side of the calliper (2).

Fit and screw home the other bolts (22).

Remove the lifting strap, bolt (8) and pad retainer (7).

Tighten all bolts to 100±5 Nm and then **angle tighten** for the relevant bolt as set out in the following table. Use a standard protractor.
The caliper must be free to slide on the slide pins as brake actuation and pad wear occur. If the caliper moves freely on the slide pins, then the caliper sliding function is acceptable. If the caliper does not move freely on the slide pins, then refer to the Fault Finding section of this Service Manual to help determine the root cause.

Fitting brake chamber

Check the internal seal (A) of the brake chamber (25/26) for cracks and damage, and that its outer sealing flange (B) to the calliper is intact. Also check that the brake chamber (25/26) works properly (e.g. that the inner return spring is OK, the push rod (C) end is OK, and that the brake chamber housing’s lower drain plug has been removed etc).

If remedial measures are required, see the vehicle manufacturer’s instructions.

Angle tightening table

<table>
<thead>
<tr>
<th>Pitch</th>
<th>M16*</th>
<th>M18</th>
<th>M20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 mm</td>
<td>+70°</td>
<td>+70°</td>
<td>+80°</td>
</tr>
<tr>
<td>1.5 mm</td>
<td>+50°</td>
<td>+50°</td>
<td>+55°</td>
</tr>
<tr>
<td>2.0 mm</td>
<td>+35°</td>
<td>+35°</td>
<td>+40°</td>
</tr>
<tr>
<td>2.5 mm</td>
<td>-</td>
<td>+30°</td>
<td>+35°</td>
</tr>
</tbody>
</table>

Example: Bolt M 16 x 1.5
Tighten to 100±5 Nm + 50°

* = The bolt must not be re-used
Remove the delivery seal from the brake calliper (2) brake chamber flange.

Check that there is grease in the ball cup in lever (44). Top up with grease P/N 89652 if required.

Check that the brake chamber (25/26) mounting flange is clean.

Fit brake chamber (25/26) using nuts (27). Tightening torque 180±20 Nm.

Fitting brake pads

Make sure that the adjustment shaft (55) is fully retracted using an 8 mm ring spanner. Ensure that the protection springs (30) (protection springs (30) are optional) are positioned correctly so that they are not jammed/damaged or interfere with the backward travel of the thrust plates (28). Check that the contact surfaces of the pads (5) in the disc brake are free from dirt.
Fit the brake pads (5) and on one side of each pad with a feeler gauge check the clearance between the side of the pad and the carrier is greater than 0.5mm over the whole surface area. If the clearance is less than 0.5, remove the pads and clean the surfaces. Then refit the pads and measure again, repeat this process as required until the clearance is greater than 0.5mm.

Ensure that the friction material faces the brake disc!

If the brake unit has a PWI (Pad Wear Indicator) fitted then reference Pad Wear Indicator (PWI) work instruction within the Additional Work section of this manual.

If the brake unit has a PWS (Pad Wear Sensor) fitted then reference Pad Wear Sensor (PWS) work instruction within the Additional Work section of this manual.

Fit the pad springs (6), pad retainer (7) and secure with a bolt (8). Tightening torque 45±5Nm
Initial setting

Check that brake disc (A) can be turned freely.

Using an 8 mm ring spanner, turn the adjustment shaft (55) clockwise until both pads (5) touch the brake disc (A). Then turn it 1/4 turn anticlockwise to obtain a basic clearance between pads (5) and brake disc (A). Check that brake disc can be turned freely. Remove the ring spanner.

IMPORTANT!

Never use an impact wrench or suchlike to turn the adjustment shaft (55) as this may damage the adjustment mechanism!

Installing the plug (15)

Fitting the plug (15) (where applicable): Lubricate the inside and outside of the plug (15) and the recess for the adjustment shaft, using grease P/N 89652.

Then fit the plug (15) for the adjustment shaft (55). Check that the plug (15) for the adjustment shaft (55) is pushed fully into place. (See diagram.)

To provide the correct clearance between the brake disc (A) and brake pads (5) the mechanism will make the final adjustment itself when the brakes are applied the next few times.
Disc brake with spring brake chamber
Make sure that there is sufficient air in the system (min. 6 bar).
Apply air pressure to the parking brake (min. 6 bar).
Uncage the parking brake spring.

With the service brake engaged and, where appropriate, with the parking brake released, check the brake chambers, hoses and connections in respect for leaks or damage.

Fit the wheels as per the vehicle manufacturer’s instructions.

NB!
Check that the contact surface of the rim and hub are clean and free from distortion. Follow the vehicle manufacturer’s instructions for fitting and tightening torques!

⚠ Check that the brake hoses do not foul during full wheel articulation.

Check the wheel so it turns freely with the parking brake released.
Remove the axle support and the wheel chocks and lower the axle in accordance with the vehicle manufacturer's instructions.
Replcmg adjustment screw bellows

For number references shown within () that do not appear in this section, see the exploded view (p. 104-105)

IMPORTANT!
Follow the safety instructions. See the section entitled 'Safety'.

The vehicle manufacturer's instructions should also be followed.

- Follow the vehicle manufacturer's instructions to chock the wheels on an axle which is not to be raised.
- Lift and support the axle, remove the wheels in accordance with the vehicle manufacturer's instructions.

Do not undo the bolts (78) that hold the calliper housing (2a) and the calliper bridge (2b) together!

Clean the brakes, removing any dirt and dust. Use dust removal equipment or a vacuum cleaner but do not use compressed air - inhaling dust particles may be hazardous to your health! See "Cleaning" for instructions.

If the disc brake is equipped with a parking brake function, ensure that the spring brake chamber is fully disengaged and mechanically secured in the released position.

See the vehicle manufacturer's instructions for more information.
Replacing adjustment screw bellows

Removing pads

Using an 8mm ring spanner, release the brake adjustment by turning the adjustment shaft (55) anticlockwise until the thrust plate (28) is fully retracted.

IMPORTANT!

Never use an impact wrench or suchlike to turn the adjustment shaft (55) as this may damage the adjustment mechanism!

IMPORTANT!

When releasing the brake adjustment it is imperative that the protection springs (30) are free from dirt, dust and possible obstruction, and positioned properly in the cover (33). This to ensure that the thrust plates (28) are free to retract fully without hindrance. Retracting with an incorrectly positioned or deaned protection spring could cause damage to the brake adjustment mechanism. Unless the thrust plates (28) are fully retracted it will not be possible to fit new pads (5).

The stop at fully retracted thrust plates (28) must be distinct!

Do not tighten in this position!

Remove the bolt (8), pad retainer (7) and pad springs (6).

PWI (Pad Wear Indicator)
If the brake unit has a PWI (Pad Wear Indicator) fitted then reference Pad Wear Indicator (PWI) work instruction within the Additional Work section of this manual.

If the brake unit has a PWS (Pad Wear Sensor) fitted then reference Pad Wear Sensor (PWS) work instruction within the Additional Work section of this manual.

Remove pad springs (6). Remove pads (5).

If needed, use special tool P/N81920 to remove pads (5).

Clean the pad (5) contact surfaces on thrust plates (28), in calliper (2) and on carrier (3) with a wire brush. Do not grind!
Replacing bellows on disc brakes with a common thrust plate (previous design of ModulX)

Removing bellows

Protection springs (30) are optional and are therefore not always fitted (customisation). Using an 8 mm ring spanner, turn the adjustment shaft (55) clockwise so that the thrust plate (28) moves 35-40 mm out from its fully retracted position. Pull back the protection spring (30) and detach the thrust plate (28) from the adjustment screws (35) by tapping a screwdriver into the gap between the two adjustment screws (35) and the thrust plate (28).

Do not damage the adjustment screws (35)/thrust plate (28)!

NB! The clips (29) will be forced out of their slots when the thrust plate (28) comes loose.

Do not prise out thrust plate (28) against cover (33) (with a screwdriver or similar tool) - the needle bearings (43/48) may be displaced and be damaged!

Remove protection springs (30).*

Clean the cover (33) and bellows (32).

To prevent any change being made to the synchronisation of the thrust plate (28) it is important to hold the adjustment screws (35) in position so that they cannot rotate during the following steps!

Remove the bellows (32) from the adjustment screws (35) and cover (33) by prising them off with a screwdriver. Do not damage the sealing surfaces! Avoid damaging the bellows’ (32) mounting surfaces in the cover (33)!
Fit the thrust plate (28) in place and hold it in position against the adjustment screws (35) (with the clips (29) removed). Check the two holes in the thrust plate (28) to ensure that the adjustment screws (35) are correctly seated. Turn the adjustment shaft (55) anticlockwise until the adjustment screws (35) are fully retracted and then screw them out one turn. Remove the thrust plate (28).

* (if present)

NB! Do not damage the adjustment screws and/or bellows mounting surfaces, as this could cause leakage or water penetration.

Cleaning

Clean the thrust plate (28), adjustment screws (35) and sealing surfaces in the cover (33).

Make sure that dirt and impurities do not enter the openings for the adjustment screws!

Inspection

Check that the sealing surfaces for the bellows (32) in the cover (33) and on the adjustments screws (35) are free from damage that could cause leakage or water penetration.

Check that the seats for clips (29) on adjustment screws (35) and in thrust plate (28) are intact. In case of damage replace thrust plate (28) and adjustment screw (35).

Also check the part of the mechanism (4) visible beyond the adjustment screws (35), looking for signs of corrosion, damage and condensation. If corrosion or damage is visible the complete mechanism (4) must be replaced.

See section entitled 'Replacing caliper housing.'
Fitting bellows

Check that the adjustment screws (55) are rotated into the right position to engage in their guides in the thrust plate (28). Use a straight edge to check that the adjustment screws (35) are parallel (i.e. in their original position). Adjust if necessary. A 1/2 turn = 2 mm. Lubricate the adjustment screws’ (55) threads with grease P/N 89652.

Put the bellows (32) in place in the cover (33). Press them into their positions using special tool P/N89778 and a suitable lever. Insert the lever between the brake disc (A) and special tool P/N89778. **Do not damage the brake disc (A)!**

Using the thrust plate (28), recheck that the adjustment screws (35) are turned to the correct position. Then press the bellows (32) into position on the adjustment screws (35) using special tool P/N89779 and a lever (as described above).

Compress the protection springs (30)* and insert them in position in the cover (33) with the smallest end facing the thrust plate (28). Then press the thrust plate (28) into place on the adjustment screws (35).

Look through the two holes in the thrust plate (28) to check that the adjustment screws (35) are correctly seated.

* (if present)

Fitting the clips

Place the inner part of special tool P/N 89936 on a flat surface, such as a work bench, with the large end downwards, and place the clip (29) over the end of the tool. Use the outer part of the special tool to press the clip (29) all the way down towards the surface. Now centre the special tool, with the clip (29), over the adjustment screw (35). Insert a suitable lever between the brake disc (A) and the special tool, and use it to press the clip (29) into its slot on the adjustment screw (35). **Do not damage the brake disc (A)!**

Repeat the procedure to fit the second clip (29).

Make sure that the protection springs (30) are correctly seated, otherwise they will be damaged!
Replacing bellows on disc brakes with two separate thrust plate (later design of ModulX)

Removing the bellows

Protection springs (30) are optional and are therefore not always fitted (customisation).

Turn the adjustment shaft using an 8 mm ring spanner (55) clockwise until the thrust plates (28) are 35-40 mm out from their fully retracted position. Pull back the protection springs (30)* and carefully pry off the bellows (32) from the thrust plates (28) using a screwdriver. Remove the thrust plates (28) by knocking in a screwdriver and bending the joint to the adjustment screw (35). Avoid damaging the adjustment screws (35)/thrust plate (35)!

Do not pry off the thrust plates (28) using a chisel or suchlike on the cover (33). This could lead to damage of the mechanism (4).

Remove the protection springs (30)*.

Remove clips (29).

Turn the adjustment shaft (55) anti-clockwise until the adjustment screws are fully retracted, and then screw out one turn.

Remove the bellows (32) from the cover (33) by prying them out with a screwdriver. Avoid damaging the sealing surfaces!

IMPORTANT! Avoid damaging the adjustment screws and/or the seals’ mounting surfaces!

* (if present)
Cleaning

Clean the cover (33), thrust plates (28) and adjustment screws (35).

Make sure that dirt and other contamination does not enter through the openings at the adjustment screws!

Inspection

Check that the bellows’ (32) mounting surfaces in the cover (33) and on the thrust plates (28) are free from damage.

Check that the thrust plates’ contact surfaces (28) and the adjustment screws (35) are free from damage.

Also check the part of the mechanism (4) that is visible past the adjustment screws (35) with respect to corrosion, damage and condensation. If rust/damage has occurred, replace the full calliper housing (2a) assembly.

See section on “Replacing calliper housing”.

Installing the bellows

Lubricate the adjustment screws’ (35) threads with grease P/N 89652. Put the bellows (32) in place in the cover (33). Then press them into position using special tool P/N89778 and appropriate prying device. Bend using a prying device between the brake disc (A) and special tool P/N89778. Avoid damaging the brake disc (A)!

Fit new circlips (29) on the adjustment screws (35).

Turn the protection springs (30)* together and put in place in the cover (33) with the small diameter directed to the thrust plate (28).
Press the bellows (32) in place on the thrust plate (28) with your fingers, and then press the thrust plate (28) in place on the adjustment screw (35) using special tool P/N89778 and a suitable prying device.

Repeat for the other bellows (32), adjustment screw (35) and thrust plate (28).

If protection springs (30) are used: make sure they are correctly positioned in their seats and do not damage the bellows (32)!

* (if present)

Fitting brake pads

Make sure that the adjustment shaft (55) is fully retracted using an 8 mm ring spanner. Ensure that the protection springs (30) (protection springs (30) are optional) are positioned correctly so that they are not jammed/damaged or interfere with the backward travel of the thrust plates (28). Check that the contact surfaces of the pads (5) in the disc brake are free from dirt.
Fit the brake pads (5) and on one side of each pad with a feeler gauge check the clearance between the side of the pad and the carrier is greater than 0.5mm over the whole surface area. If the clearance is less than 0.5, remove the pads and clean the surfaces. Then refit the pads and measure again, repeat this process as required until the clearance is greater than 0.5mm.

Ensure that the friction material faces the brake disc!

If the brake unit has a PWI (Pad Wear Indicator) fitted then reference Pad Wear Indicator (PWI) work instruction within the Additional Work section of this manual.

If the brake unit has a PWS (Pad Wear Sensor) fitted then reference Pad Wear Sensor (PWS) work instruction within the Additional Work section of this manual.

Fit the pad springs (6), pad retainer (7) and secure with a bolt (8). Tightening torque 45±5Nm
Initial setting

Check that the brake disc (A) can rotate freely.

Using an 8 mm ring spanner, turn the adjustment shaft (55) clockwise until both pads (5) touch brake disc (A). Then turn it 1/4 turn anticlockwise to obtain a basic clearance between pads (5) and brake disc (A). Check that brake disc can be turned freely. Remove the ring spanner.

IMPORTANT!

Never use an impact wrench or suchlike to turn the adjustment shaft (55) as this may damage the adjustment mechanism!

Check the radial seal (69) for wear and damage. Clean/replace if required.

See replacement instructions in the section on “Additional work”.

Installing the plug (15)

Fitting the plug (15) (where applicable): Lubricate the inside and outside of the plug (15) and the recess for the adjustment shaft, using grease P/N 89652.

Then fit the plug (15) for the adjustment shaft (55). Check that the plug (15) for the adjustment shaft (55) is pushed fully into place. (See diagram.)

To provide the correct clearance between the brake disc (A) and brake pads (5) the mechanism will make the final adjustment itself when the brakes are applied the next few times.
Disc brake with spring brake chamber

Make sure that there is sufficient air in the system (min. 6 bar).

Apply air pressure to the parking brake (min. 6 bar).

Uncage the parking brake spring.

With the service brake engaged and, where appropriate, with the parking brake released, check the brake chambers, hoses and connections in respect for leaks or damage.

Fit the wheels as per the vehicle manufacturer’s instructions.

NB!

Check that the contact surface of the rim and hub are clean and free from distortion. Follow the vehicle manufacturer’s instructions for fitting and tightening torques!

Check that the brake hoses do not foul during full wheel articulation.

Check the wheel so it turns freely with the parking brake released.

Remove the axle support and the wheel chocks and lower the axle in accordance with the vehicle manufacturer's instructions.
Replacing slide bearings and bellows

For number references shown within () that do not appear in this section, see the exploded view (p. 104-105)

IMPORTANT!

Follow the safety instructions. See the section entitled 'Safety'.

The vehicle manufacturer's instructions should also be followed.

- Follow the vehicle manufacturer's instructions to chock the wheels on an axle which is not to be raised.
- Lift and support the axle, remove the wheels in accordance with the vehicle manufacturer's instructions.

Do not undo the bolts (78) that hold the calliper housing (2a) and the calliper bridge (2b) together!

Clean the brakes, removing any dirt and dust. Use dust removal equipment or a vacuum cleaner but do not use compressed air - inhaling dust particles may be hazardous to your health! See "Cleaning" for instructions.

If the disc brake is equipped with a parking brake function, ensure that the spring brake chamber is fully disengaged and mechanically secured in the released position.

See the vehicle manufacturer's instructions for more information.
Removing pads

Using an 8mm ring spanner, release the brake adjustment by turning the adjustment shaft (55) anticlockwise until the thrust plate (28) is fully retracted.

IMPORTANT!

Never use an impact wrench or suchlike to turn the adjustment shaft (55) as this may damage the adjustment mechanism!

IMPORTANT!

When releasing the brake adjustment it is imperative that the protection springs (30) are free from dirt, dust and possible obstruction, and positioned properly in the cover (33). This to ensure that the thrust plates (28) are free to retract fully without hinderance. Retracting with an incorrectly positioned or deaned protection spring could cause damage to the brake adjustment mechanism. Unless the thrust plates (28) are fully retracted it will not be possible to fit new pads (5).

The stop at fully retracted thrust plates (28) must be distinct!

Do not tighten in this position!

Remove the bolt (8), pad retainer (7) and pad springs (6).

PWI (Pad Wear Indicator)
Replace slide bearings and bellows

If the brake unit has a PWI (Pad Wear Indicator) fitted then reference Pad Wear Indicator (PWI) work instruction within the Additional Work section of this manual.

If the brake unit has a PWS (Pad Wear Sensor) fitted then reference Pad Wear Sensor (PWS) work instruction within the Additional Work section of this manual.

Remove pad springs (6). Remove pads (5).

If needed, use special tool P/N81920 to remove pads (5).

Clean the pad (5) contact surfaces on thrust plates (28), in calliper (2) and on carrier (3) with a wire brush. Do not grind!
Remove the pads (5)

If needed, use special tool P/N 81920 to remove the brake pads (5).

Removing brake chamber

If the disc brake is fitted with a spring brake chamber (26) - make sure that it is mechanically secured in the released position. See the vehicle manufacturer’s instructions for more information.

Remove the two nuts (27) holding brake chamber (25/26).

Remove brake chamber (25) / spring brake chamber (26) and support it so that hoses and connections (A) are not damaged.
Check through the aperture in the brake chamber (25/26) attachment flange for moisture / corrosion. If present, replace the calliper housing (2) to avoid operating problems.

If action is required see section on "Replacing calliper housing".

Fit special tool P/N 81927 in the brake chamber opening in the calliper (2).

Removing disc brake

Loosen the disc brake’s retaining bolts (22).

Fit pad retainer (7) and secure with bolt (8). Connect a lifting strap and a suitable lifting device.

Remove the retaining bolts (22), lift out the disc brake.

Remove the lifting strap, bolt (8) and pad retainer (7).
Removing slide pins, slide bearings and bellows

Position the disc brake in a vice. Use protection jaws.

Remove the two protection caps (9) and the two protection cups (71) using a hammer and chisel.

The protection caps (9) and protection cups (71) must not be re-used.
Remove the four slide pin fixing bolts (10) using special tool P/N81933 (Torx E18 socket).
Press slide pins (13) back (enough to remove carrier (3) from calliper (2)) by rocking carrier (3) to and fro.

NB!
Do not use gripping tools or similar - this will damage the slide pin sealing surfaces!

Remove carrier (3) from calliper (2).

NB! Only grip on external surfaces!

Clean the components, removing any dirt and dust. Use dust removal equipment or a vacuum cleaner, but do not use compressed air - inhaling dust particles may be harmful to your health!

Remove the 4 slide pins (13) from the calliper (2).

Remove the six bellows (12) by carefully levering them out.

IMPORTANT! Avoid damaging the bellows’ (12) mounting surfaces in the calliper (2)!
Remove the four slide bearings (14) (which are of split design) using a small screwdriver. Begin at the split.

IMPORTANT! Avoid damaging the slide bearings’ (14) mounting surfaces in the calliper (2)!

Cleaning/Inspection

Clean and check the surfaces of the calliper (2) that mate with the slide bearings (14) and bellows (12) to ensure they are free from dirt and damage.
Fitting slide pins, slide bearings and bellows

There are two types of slide bearings, the old flat Teflon band design and the new circular Composite band design. Both types of slide bearings are fully interchangeable between all versions of Haldex ADB units, only the fitting instructions differ. The two types of slide bearings can be used together if required.

Fitting instructions for the old flat Teflon band:

Slide bearings (14) are supplied as a flat band. Shape four slide bearings (14) in two stages as shown (the ends of the bearing band must touch each other) and fit them in position in the calliper (2).
Expand the slide bearings (14) by pressing/twisting through special tool P/N 81921.

Fitting instructions for the new circular Composite band:

Slide bearings (14) are supplied as a pre formed circular band split with an angled form. Compress the circular band between the thumb and finger ensuring the angled split is correctly orientated, as shown in the adjacent diagram.
Insert and then release the circular band and check it has seated correctly in their calliper locations (2).

They should seat correctly by hand.
No special tools are required.

NB!: If the slide bearing is compressed with the angled split incorrect the bearing will not seat properly within the casting thus stopping the Slide Pins from engaging.
Press the slide pins (13) into position in the slide bearings (14).

Slide pins (13) and Torx bolts (10) come in two designs for the ModulX brake:

Previous design: symmetrical slide pins (13), can be fitted with optional end facing the carrier (3). Torx bolts (10) for this design are of the cylindrical type.

Later design: asymmetrical slide pins (13), that must be fitted with the small inner diameter facing the carrier (3). Torx bolts (10) for this design are of the conical type. These Torx bolts cannot be fitted if the slide pin (13) is turned the wrong way.

Slide pins (13) must be able to slide easily in slide bearings (14) to ensure that calliper (2) floats over carrier (3).

Later design of slide pin (13) (asymmetric)/Torx bolt (10) (conical) replaces together the previous design of symmetrical slide pin (13)/Torx bolt (10) (cylindrical). It is important to use the relevant tightening torque for each design.
Fit the bellows (12) in calliper (2) using special tool P/N81922.

NB!

Protection cups (71) should only be fitted after tightening the Torx bolt (10) to the required torque.

Press the end of the bellows (12) into position on the shoulder on the end of slide pin (13).

Clean the pads’ (5) contact surfaces in the carrier (3) caliper (2) and on thrust plates (28). Also clean pads (5) (if these are to be re-used). Use a wire brush. Do not grind!

Press out slide pins (13) so that they are free from carrier (3) during fitting.

Lift carrier (3) into position in calliper (2) and press in slide pins (13) so that they fit on carrier (3). Do not damage bellows (12)!

NB! Only grip on external surfaces! Do not damage the bellows (12)!
Lubricate the threads on the four slide pin fixing bolts (10) using anti-seize compound P/N81934 and screw them into position. Tighten with a torque wrench and special tool P/N81933 (Torx E18 socket):

Previous designs:
Cylindrical bolts, tightening torque \(220 \pm 20\) Nm

Later design:
Conical bolts, tightening torque \(280 \pm 20\) Nm

Check that carrier (3) slides easily in calliper (2).

Max. slide resistance with disc brake (1) fitted on the vehicle axle: \(100\) N. (See section on “Inspection/checks/adjustment”)

Tap new protection caps (9) into position in the outer ends of the slide pins (13) using a \(17\) mm socket and an extension.

NB! The protection caps (9) must go all the way into the slide pins.

Carefully tap protection cups (71) for inner slide pins (13) in place in the calliper (2).

IMPORTANT! Protection cups (71) must touch the bottom of the calliper (2)!
Replacing slide bearings and bellows

Installing disc brake

Check that the surfaces for fitting to the axle, brake chamber (25/26) and pads (5) are clean.

Fit pad retainer (7) and secure with bolt (8). Connect a lifting strap and a suitable lifting device.

Lift the disc brake into position.

Follow the vehicle/axle manufacturers recommendations for fitting/tightening bolts (22) or follow the method as described below:

Lubricate the retaining bolts springly (22) on the threads and under the bolt heads with oil.

Always use new bolts (22) for sizes marked * in the table below.

Fit and screw home one bolt (22) on each side of the calliper (2).

Fit and screw home the other bolts (22).

Remove the lifting strap, bolt (8) and pad retainer (7).

Tighten all bolts to **100±5 Nm** and then **angle tighten** for the relevant bolt as set out in the following table. Use a standard protractor.

<table>
<thead>
<tr>
<th>Angle tightening table</th>
<th>M16*</th>
<th>M18</th>
<th>M20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 mm</td>
<td>+70°</td>
<td>+70°</td>
<td>+80°</td>
</tr>
<tr>
<td>1.5 mm</td>
<td>+50°</td>
<td>+50°</td>
<td>+55°</td>
</tr>
<tr>
<td>2.0 mm</td>
<td>+35°</td>
<td>+35°</td>
<td>+40°</td>
</tr>
<tr>
<td>2.5 mm</td>
<td>-</td>
<td>+30°</td>
<td>+35°</td>
</tr>
</tbody>
</table>

* = The bolt must not be re-used

Example: Bolt M 16 x 1.5
Tighten to 100±5 Nm + 50°

The caliper must be free to slide on the slide pins as brake actuation and pad wear occur. If the caliper moves freely on the slide pins, then the caliper sliding function is acceptable. If the caliper does not move freely on the slide pins, then refer to the Fault Finding section of this Service Manual to help determine the root cause.
Fitting brake chamber

Check the internal bellows (A) in brake chamber (25/26) for cracks and damage and that the external seal flange (B) against the calliper is intact. Also check that the brake chamber (25/26) works properly (e.g. that the inner return spring is OK, that the push rod's (C) end is OK, and that the brake chamber housing’s lower drain plug has been removed etc).

In the event of damage, replace the brake chamber (25/26).

Remove special tool (protective cover) P/N81927.

Check that the brake chamber (25/26) contact flange is free from dirt.

Put a knob of grease P/N 89652 in the ball cup on lever (44).

Fit brake chamber (25/26) using nuts (27). Tightening torque 180 ±20 Nm.
Fitting brake pads

Make sure that the adjustment shaft (55) is fully retracted using an 8 mm ring spanner. Ensure that the protection springs (30) (protection springs (30) are optional) are positioned correctly so that they are not jammed/damaged or interfere with the backward travel of the thrust plates (28). Check that the contact surfaces of the pads (5) in the disc brake are free from dirt.

Fit the brake pads (5) and on one side of each pad with a feeler gauge check the clearance between the side of the pad and the carrier is greater than 0.5mm over the whole surface area. If the clearance is less than 0.5, remove the pads and clean the surfaces. Then refit the pads and measure again, repeat this process as required until the clearance is greater than 0.5mm.

Ensure that the friction material faces the brake disc!

If the brake unit has a PWI (Pad Wear Indicator) fitted then reference Pad Wear Indicator (PWI) work instruction within the Additional Work section of this manual.

If the brake unit has a PWS (Pad Wear Sensor) fitted then reference Pad Wear Sensor (PWS) work instruction within the Additional Work section of this manual.

Fit the pad springs (6), pad retainer (7) and secure with a bolt (8). Tightening torque 45±5Nm
Initial setting

Check that the brake disc (A) can rotate freely.

Using an 8 mm ring spanner, turn the adjustment shaft (55) clockwise until both pads (5) touch brake disc (A). Then turn it 1/4 turn anticlockwise to obtain a basic clearance between pads (5) and brake disc (A). Check that brake disc can be turned freely. Remove the ring spanner.

IMPORTANT!

Never use an impact wrench or suchlike to turn the adjustment shaft (55) as this may damage the adjustment mechanism!

Check the radial seal (69) for wear and damage. Clean/replace if required.

See replacement instructions in the section on “Additional work”.

Installing the plug (15).

Fitting the plug (15) (where applicable): Lubricate the inside and outside of the plug (15) and the recess for the adjustment shaft, using grease P/N 89652.

Then fit the plug (15) for the adjustment shaft (55). Check that the plug (15) for the adjustment shaft (55) is pushed fully into place. (See diagram.)

To provide the correct clearance between the brake disc (A) and brake pads (5) the mechanism will make the final adjustment itself when the brakes are applied the next few times.
Disc brake with spring brake chamber

Make sure that there is sufficient air in the system (min. 6 bar).

Apply air pressure to the parking brake (min. 6 bar).

Uncage the parking brake spring.

With the service brake engaged and, where appropriate, with the parking brake released, check the brake chambers, hoses and connections in respect for leaks or damage.

Fit the wheels as per the vehicle manufacturer’s instructions.

NB!

Check that the contact surface of the rim and hub are clean and free from distortion. Follow the vehicle manufacturer’s instructions for fitting and tightening torques!

Check that the brake hoses do not foul during full wheel articulation.

Check the wheel so it turns freely with the parking brake released.

Remove the axle support and the wheel chocks and lower the axle in accordance with the vehicle manufacturer’s instructions.
Replacing calliper housing/mechanism

For number references shown within () that do not appear in this section, see the exploded view (p. 104-105)

VERY IMPORTANT!

Follow the safety instructions. See the section entitled 'Safety'.

The vehicle manufacturer's instructions should also be followed.

- Follow the vehicle manufacturer's instructions to chock the wheels on an axle which is not to be raised.
- Lift and support the axle, remove the wheels in accordance with the vehicle manufacturer's instructions.

Clean the brakes, removing any dirt and dust. Use dust removal equipment or a vacuum cleaner but do not use compressed air - inhaling dust particles may be hazardous to your health! See "Cleaning" for instructions.

If the disc brake is equipped with a parking brake function, ensure that the spring brake chamber is fully disengaged and mechanically secured in the released position.

See the vehicle manufacturer's instructions for more information.
Removing pads

Using an 8mm ring spanner, release the brake adjustment by turning the adjustment shaft (55) anticlockwise until the thrust plate (28) is fully retracted.

IMPORTANT!

Never use an impact wrench or suchlike to turn the adjustment shaft (55) as this may damage the adjustment mechanism!

IMPORTANT!

When releasing the brake adjustment it is imperative that the protection springs (30) are free from dirt, dust and possible obstruction, and positioned properly in the cover (33). This to ensure that the thrust plates (28) are free to retract fully without hinderance. Retracting with an incorrectly positioned or deaned protection spring could cause damage to the brake adjustment mechanism. Unless the thrust plates (28) are fully retracted it will not be possible to fit new pads (5).

The stop at fully retracted thrust plates (28) must be distinct!

Do not tighten in this position!

Remove the bolt (8), pad retainer (7) and pad springs (6).

PWI (Pad Wear Indicator)
Replacing calliper housing

If the brake unit has a PWI (Pad Wear Indicator) fitted then reference Pad Wear Indicator (PWI) work instruction within the Additional Work section of this manual.

If the brake unit has a PWS (Pad Wear Sensor) fitted then reference Pad Wear Sensor (PWS) work instruction within the Additional Work section of this manual.

Remove pad springs (6). Remove pads (5).

If needed, use special tool P/N81920 to remove pads (5).

Clean the pad (5) contact surfaces on thrust plates (28), in calliper (2) and on carrier (3) with a wire brush. Do not grind!
Replacing calliper housing

Removing brake chamber

If the disc brake is fitted with a spring brake chamber (26) - make sure that it is mechanically secured in the released position. See the vehicle manufacturer’s instructions for more information.

Remove the two nuts (27) holding brake chamber (25/26).

Remove brake chamber (25) / spring brake chamber (26) and support it so that hoses and connections (A) are not damaged.
Removing disc brake

Loosen the disc brake’s retaining bolts (22).

Fit pad retainer (7) and secure with bolt (8). Connect a lifting strap and a suitable lifting device.

Remove the retaining bolts (22), lift out the disc brake.

Remove the lifting strap, bolt (8) and pad retainer (7).
Removing carrier

Position the disc brake in a vice. Use protection jaws.

Remove the two protection caps (9) and the two protection cups (71) using a hammer and chisel.

The protection caps (9) and protection cups (71) must not be re-used.

Remove the four slide pin fixing bolts (10) using special tool P/N81933 (Torx E18 socket).

Press slide pins (13) back (enough to remove carrier (3) from calliper (2)) by rocking carrier (3) to and fro.

NB!

Do not use gripping tools or similar - this will damage the slide pin sealing surfaces!
Remove carrier (3) from calliper (2).

NB! Only grip on external surfaces!

Clean the components, removing any dirt and dust. Use dust removal equipment or a vacuum cleaner, but do not use compressed air - inhaling dust particles may be harmful to your health!

Removing calliper housing

Remove the four Torx bolts (78) that hold the calliper housing (2a) to the calliper bridge (2b), using special tool P/N 90797 (Torx E20 socket) for DB19, or P/N 90798 (Torx E24 socket) for DB22.

Remove the calliper housing (2a).
Removing slide bearings from caliper bridge.

Remove the four bellows (12) by carefully levering them out.

NB! Do not damage the mating surfaces!

Then press both slide pins (13) out of the calliper bridge (2b).

Remove the two slide bearings (14) (which have a split construction) using a small screwdriver. Begin at the split.

NB! Do not damage the mating surfaces!

Cleaning/Inspection

Clean and check the surfaces of the calliper bridge (2b) that mate with the slide bearings (14) and bellows (12) to ensure they are free from dirt and damage.

Also clean and check the threads of the Torx bolts (78) in the calliper bridge (2b) and their surfaces that are in contact with the calliper housing (2a), to ensure they are not damaged. Otherwise the complete disc brake (1) must be replaced.

Check the four slide pins (13) for wear and damage. Replace if necessary.
Fitting slide pins, slide bearings and bellows

There are two types of slide bearings, the old flat Teflon band design and the new circular Composite band design. Both types of slide bearings are fully interchangeable between all versions of Haldex ADB units, only the fitting instructions differ. The two types of slide bearings can be used together if required.

Fitting instructions for the old flat Teflon band:

Slide bearings (14) are supplied as a flat band. Shape four slide bearings (14) in two stages as shown (the ends of the bearing band must touch each other) and fit them in position in the calliper (2). Expand the slide bearings (14) by pressing/twisting through special tool P/N 81921.

Fitting instructions for the new circular Composite band:

Slide bearings (14) are supplied as a pre formed circular band split with an angled form. Compress the circular band between the thumb and finger ensuring the angled split is correctly orientated, as shown in the adjacent diagram. Insert and then release the circular band and check it has seated correctly in their calliper locations (2).

They should seat correctly by hand. No special tools are required.

NB!: If the slide bearing is compressed with the angled split incorrect the bearing will not seat properly within the casting thus stopping the Slide Pins from engaging.
Fitting calliper housing

It is important that all the surfaces in the joint between the calliper housing (2a) and the calliper bridge (2b) are dry and free from contaminants (oil, grease, etc.).

Lubricate the Torx bolts a little (78) on the threads and under the bolt heads with oil.

IMPORTANT! No lubricant in the joint between the calliper housing (2a) and the calliper yoke (2b)!

Assemble the calliper housing (2a) and the calliper bridge (2b) using the four Torx bolts (78).

NB! It is important that the Torx bolts run freely in the threads in the calliper bridge (2b)!

Tighten the Torx bolts (78) crosswise using a special tool P/N90797 (Torx E20 sleeve) for DB19/DB22LT and P/N90798 (Torx E24 sleeve) for DB22 to tightening torque as below:

<table>
<thead>
<tr>
<th>Model</th>
<th>Torque</th>
<th>Bolt</th>
<th>Spec. tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB19</td>
<td>390±20Nm</td>
<td>M16</td>
<td>P/N 90797</td>
</tr>
<tr>
<td>DB22</td>
<td>560±30Nm</td>
<td>M18</td>
<td>P/N 90798</td>
</tr>
<tr>
<td>DB22LT</td>
<td>390±20Nm</td>
<td>M16</td>
<td>P/N 90797</td>
</tr>
</tbody>
</table>

390±20Nm DB19/DB22LT
560±30Nm DB22

Replacing calliper housing
Replacing calliper housing

Fitting slide pins and bearings

Press the slide pins (13) into position in the slide bearings (14).

Slide pins (13) and Torx bolts (10) come in two designs for the ModulX brake:

Previous design: symmetrical slide pins (13), can be fitted with either end facing the carrier (3). Torx bolts (10) for this design are of the cylindrical type.

Later design: asymmetrical slide pins (13), must be fitted with the small inner diameter facing the carrier (3). Torx bolts (10) for this design are of the conical type. These Torx bolts cannot be fitted if the slide pin (13) is turned the wrong way.

The slide pins (13) must be able to slide easily in the slide bearings (14) to ensure that that the calliper (2) “floats” over the carrier (3).

Fit the bellows (12) in the calliper (2) using special tool P/N 81922 (not where protection cups (71) will later be fitted).

NB!

Protection cups (71) should only be fitted after tightening the Torx bolts (10) to the correct torque.

Press the end of the bellows (12) into place on the shoulder of the slide pins (13).
Fitting the carrier

Clean the contact surfaces of the slide pins (13) and brake pads (5) on the carrier (3) with a wire brush. **Do not grind!**

Lift carrier (3) into position in calliper (2) and press in slide pins (13) so that they fit on carrier (3). **Do not damage the bellows (12)!**

NB! Only grip on external surfaces! Do not damage the bellows (12)!
Lubricate the threads on the four slide pin fixing bolts (10) using anti-seize compound P/N81934 and screw them into position. Tighten using a torque wrench and special tool P/N81933 (Torx E18 socket)

Previous designs:
Cylindrical bolts, tightening torque 220±20 Nm

Later design:
Conical bolts, tightening torque 280±20 Nm

Check that the carrier's (3) slide movement in the calliper (2) runs freely.

Max. slide resistance with disc brake (1) fitted on the vehicle axle: 100N. (See section on "Inspection/checks/adjustment")

Tap new protection caps (9) into position in the outer ends of the slide pins (13) using a 17 mm socket and an extension.

NB! The protection caps (9) must go all the way into the slide pins.

Carefully tap new protection cups (71) for inner slide pins (13) in place in the calliper (2).

IMPORTANT! Protection cups (71) must touch the bottom of the calliper (2)!
Fitting disc brake

Check that the surfaces for fitting to the axle, brake chamber (25/26) and pads (5) are clean.

Fit pad retainer (7) and secure with bolt (8). Connect a lifting strap and a suitable lifting device.

Lift the disc brake into position.

Follow the vehicle/axle manufacturers recommendations for fitting/tightening bolts (22) or follow the method as described below:

Lubricate the retaining bolts springly (22) on the threads and under the bolt heads with oil.

Always use new bolts (22) for sizes marked * in the table below.

Fit and screw home one bolt (22) on each side of the calliper (2).

Fit and screw home the other bolts (22).

Remove the lifting strap, bolt (8) and pad retainer (7).

Tighten all bolts to **100±5 Nm** and then **angle tighten** for the relevant bolt as set out in the following table. Use a standard protractor.

<table>
<thead>
<tr>
<th>Angle tightening table</th>
<th>M16*</th>
<th>M18</th>
<th>M20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 mm</td>
<td>+70°</td>
<td>+70°</td>
<td>+80°</td>
</tr>
<tr>
<td>1.5 mm</td>
<td>+50°</td>
<td>+50°</td>
<td>+55°</td>
</tr>
<tr>
<td>2.0 mm</td>
<td>+35°</td>
<td>+35°</td>
<td>+40°</td>
</tr>
<tr>
<td>2.5 mm</td>
<td>-</td>
<td>+30°</td>
<td>+35°</td>
</tr>
</tbody>
</table>

*Example: Bolt M 16 x 1.5
Tighten to 100±5 Nm + 50°

* = The bolt must not be re-used
Replacing calliper housing

The caliper must be free to slide on the slide pins as brake actuation and pad wear occur. If the caliper moves freely on the slide pins, then the caliper sliding function is acceptable. If the caliper does not move freely on the slide pins, then refer to the Fault Finding section of this Service Manual to help determine the root cause.

Fitting brake chamber

Check the internal seal (A) of the brake chamber (25/26) for cracks and damage, and that its outer sealing flange (B) to the calliper is intact. Also check that the brake chamber (25/26) works properly (e.g. that the inner return spring is OK, the push rod (C) end is OK, and that the brake chamber housing's lower drain plug has been removed etc).

If remedial measures are required, see the vehicle manufacturer's instructions.

Remove the delivery seal from the brake calliper (2) brake chamber flange.

Check that there is grease in the ball cup in lever (44). Top up with grease P/N 89652 if required.

Check that the brake chamber (25/26) mounting flange is clean.

Fit brake chamber (25/26) using nuts (27). Tightening torque 180±20 Nm.
Fitting brake pads

Make sure that the adjustment shaft (55) is fully retracted using an 8 mm ring spanner. Ensure that the protection springs (30) (protection springs (30) are optional) are positioned correctly so that they are not jammed/damaged or interfere with the backward travel of the thrust plates (28). Check that the contact surfaces of the pads (5) in the disc brake are free from dirt.

Fit the brake pads (5) and on one side of each pad with a feeler gauge check the clearance between the side of the pad and the carrier is greater than 0.5mm over the whole surface area. If the clearance is less than 0.5, remove the pads and clean the surfaces. Then refit the pads and measure again, repeat this process as required until the clearance is greater than 0.5mm.

Ensure that the friction material faces the brake disc!

If the brake unit has a PWI (Pad Wear Indicator) fitted then reference Pad Wear Indicator (PWI) work instruction within the Additional Work section of this manual.

If the brake unit has a PWS (Pad Wear Sensor) fitted then reference Pad Wear Sensor (PWS) work instruction within the Additional Work section of this manual.

Fit the pad springs (6), pad retainer (7) and secure with a bolt (8). Tightening torque 45±5Nm
Initial setting

Check that brake disc (A) can be turned freely.

Using an 8 mm ring spanner, turn the adjustment shaft (55) clockwise until both pads (5) touch the brake disc (A). Then turn it 1/4 turn anticlockwise to obtain a basic clearance between pads (5) and brake disc (A). Check that brake disc can be turned freely. Remove the ring spanner.

IMPORTANT!

Never use an impact wrench or suchlike to turn the adjustment shaft (55) as this may damage the adjustment mechanism!

Installing the plug (15)

Fitting the plug (15) (where applicable): Lubricate the inside and outside of the plug (15) and the recess for the adjustment shaft, using grease P/N 89652.

Then fit the plug (15) for the adjustment shaft (55). Check that the plug (15) for the adjustment shaft (55) is pushed fully into place. (See diagram.)

To provide the correct clearance between the brake disc (A) and brake pads (5) the mechanism will make the final adjustment itself when the brakes are applied the next few times.
Disc brake with spring brake chamber

Make sure that there is sufficient air in the system (min. 6 bar).

Apply air pressure to the parking brake (min. 6 bar).

Uncage the parking brake spring.

With the service brake engaged and, where appropriate, with the parking brake released, check the brake chambers, hoses and connections in respect for leaks or damage.

Fit the wheels as per the vehicle manufacturer’s instructions.

NB!

Check that the contact surface of the rim and hub are clean and free from distortion. Follow the vehicle manufacturer’s instructions for fitting and tightening torques!

Check that the brake hoses do not foul during full wheel articulation.

Check the wheel so it turns freely with the parking brake released.

Remove the axle support and the wheel chocks and lower the axle in accordance with the vehicle manufacturer’s instructions.
Replacing brake Chamber

For number references shown within () that do not appear in this section, see the exploded view (p. 104-105)

IMPORTANT!

Follow the safety instructions. See the section entitled 'Safety'.
The vehicle manufacturer's instructions should also be followed.

- Follow the vehicle manufacturer's instructions to chock the wheels on an axle which is not to be raised.
- Lift and support the axle, remove the wheels in accordance with the vehicle manufacturer's instructions.

Do not undo the bolts (78) that hold the calliper housing (2a) and calliper bridge (2b) together!

Clean the brakes, removing any dirt and dust. Use dust removal equipment or a vacuum cleaner but do not use compressed air - inhaling dust particles may be harmful to your health! See "Cleaning" for instructions.

Removing brake chamber

Thoroughly clean the mating surfaces of the brake chamber (25) and calliper (2) to ensure that dirt does not get into the mechanism area when removing the brake chamber.

Make sure that the brake chamber (25) is depressurised. Remove the hose (A). Remove the two nuts (27) holding the brake chamber (25). Remove the brake chamber (25).

Check through the aperture in the brake chamber attachment flange for moisture / corrosion. If present, replace the calliper housing (2a) complete with mechanism (4) to avoid operating problems.

If action is required see section on "Replacing calliper housing".
Fitting brake chamber

Check that the new brake chamber (25) is of the correct design.

There must be an internal bellows (A) on the push rod. Check the external seal flange (B) so it is intact and seats correctly!

Move the pipe fitting to the new brake chamber (25).

Check that the brake chamber (25) mating surface on the calliper is free from dirt and that the inner bellows (A) in the chamber are correctly seated at (B).

Put a knob of grease P/N 89652 in the ball cup in lever (44).

Fit the new brake chamber (25) with nuts (27). Tightening torque 180±20Nm.
Connect the brake chamber (25) hose connection (A). Remove the drain plug that faces downwards from the brake chamber housing (25).

It is important to remove the lowest drain plug in the chamber housing.

Other drain plugs can remain in position in the chamber housing.

If all the plugs remain fitted the mechanism will not operate correctly!

With the service brake engaged and, where appropriate, with the parking brake released, check the brake chambers, hoses and connections in respect for leaks or damage.

Fit the wheels as per the vehicle manufacturer's instructions.

NB!

Check that the contact surface of the rim and hub are clean and free from distortion. Follow the vehicle manufacturer's instructions for fitting and tightening torques!

Check that the brake hoses do not foul during full wheel articulation.

Check the wheel so it turns freely with the parking brake released.

Remove the axle support and the wheel chocks and lower the axle in accordance with the vehicle manufacturer's instructions.
Replacing spring brake chamber

For number references shown within () that do not appear in this section, see the exploded view (p. 101-102)

IMPORTANT!
Follow the safety instructions. See the section entitled 'Safety'.
The vehicle manufacturer's instructions should also be followed.

- Follow the vehicle manufacturer's instructions to chock the wheels on an axle which is not to be raised.
- Lift and support the axle, remove the wheels in accordance with the vehicle manufacturer's instructions.

Do not undo the bolts (78) that hold the calliper housing (2a) and calliper bridge (2b) together!

Clean the brakes, removing any dirt and dust. Use dust removal equipment or a vacuum cleaner but do not use compressed air - inhaling dust particles may be harmful to your health! See "Cleaning" for instructions.

Removing spring brake chamber

Clean particularly carefully the mating surfaces of the spring brake chamber (26) and calliper (2).

Release the parking brake (air on), min. 6 bar in compressed air system.

Activate the spring caging mechanism of the brake chamber so that the spring is held in its compressed position. See the vehicle manufacturer's instructions.

Apply the parking brake (evacuate the air).
Mark and remove the hose connections of the service brake (A) and parking brake (B).

Remove the two nuts (27) holding spring brake chamber (26).

Remove spring brake chamber (26).

Check through the aperture in the brake chamber attachment flange for moisture / corrosion. If present, replace the calliper housing (2a) complete with mechanism (4) to avoid operating problems.

If action is required see section on Replacing calliper housing.

Fitting spring brake chamber

Check that the park brake spring is caged in accordance with the manufacturer's instructions and that the new spring brake chamber (26) is of the correct design.

There must be an internal bellows (A) on the push rod. Check the external seal flange (B) so it is intact and seats correctly!

Move the pipe fittings to the new spring brake chamber (26).

Check that the brake chamber (25) mating surface on the calliper is free from dirt and that the inner bellows (A) in the chamber are correctly seated at (B).

Put a knob of grease **P/N89652** in the ball cup in lever (44)
Fit the new spring brake chamber (26) with nuts (27).
Tightening torque \(180 \pm 20 \text{Nm}\).

Fit the spring brake chamber (26) hose connections.

NB! Do not mix up the hoses!

Remove the drain plug that faces downwards from the brake chamber (25) housing.

Release the parking brake and disengage the spring brake chamber's caging mechanism so that the spring is released. Min. 6 bar in compressed air system.

It is important to remove the lowest drain plug in the chamber housing.

Other drain plugs can remain in position in the chamber housing.

NB! If all the plugs remain fitted the mechanism will not operate correctly!

With the service brake engaged and, where appropriate, with the parking brake released, check the brake chambers, hoses and connections in respect for leaks or damage.

Fit the wheels as per the vehicle manufacturer's instructions.

NB!

Check that the contact surface of the rim and hub are clean and free from distortion. Follow the vehicle manufacturer's instructions for fitting and tightening torques!

Check that the brake hoses do not foul during full wheel and suspension articulation.

Check the wheel so it turns freely with the parking brake released.

Remove the axle support and the wheel chocks and lower the axle in accordance with the vehicle manufacturer's instructions.
Additional work

Additional work is generally carried out in conjunction with other measures. If additional work is carried out separately, refer to the section “Replacing brake pads” for safety instructions and information on releasing and readjusting.

For number references shown within () that do not appear in this section, see the exploded view (p. 101-102)

Replacing the lip seal (69) and adjustment shaft (55)

Grip the hexagonal end of the adjustment shaft (55) with suitable handgrips and pull out the adjustment shaft. The radial seal (69) will come out at the same time. If necessary, lever against the handgrips to remove the adjustment shaft.

Clean the mounting surfaces for plug (15) and lip seal (69) and the space behind the lip seal (69) in the calliper housing (2a). Lubricate with grease P/N 89652. Lubricate the new lip seal (69) and adjustment shaft with grease P/N 89652.

NB! Direction of fitting – see figure.

Tap in the radial seal (69) and adjustment shaft (55) using special tool P/N 89780.

Continue with the instructions in the relevant section and/or “Initial setting”.

IMPORTANT!

Never use an impact wrench or suchlike to turn the adjustment shaft (55) as this may damage the adjustment mechanism!
Pad Wear Indicator PWI

Removing the Pad Wear Indicator (PWI)

Where applicable, remove the PWI connectors (79a) from the pads (5) using a screwdriver. Unite the cable ties (83) and hang up the PWI (79) in a suitable way to prevent damage.

If the PWI connectors (79a) have been in contact with the brake disc or damaged in any other way or have been triggered, the PWI (79) must be replaced. Disconnect the vehicle cable from the PWI connector (79c).

PWI (79) is available in two versions as spare part: complete with pad retainer (7) and without pad retainer (7).

See section on "Additional work". Transfer of pad retainer in the PWI plate when transferring existing pad retainer (7) to new PWI (79).

Fitting the Pad Wear Indicator (PWI)

Fit PWI connectors (79a) in place where appropriate in the pads (5). Note that the PWI connectors (79a) must be turned at the correct angle to fit the pads (5).

The PWI cable (79e) for inner brake pad (5) must be looped to allow it to locate under, and be protected by, the PWI plate’s (79d) protective lug (A). See figure.

The PWI cable (79e) for the outer brake pad (5) must be positioned correctly in the calliper’s (2) cable recess to be protected. See figure.

When fitting the pad retainer (7)/PWI (79) to the calliper (2), lay the PWI cable (79e) correctly so that it comes out on the same side in the PWI plate (79d) and then continues on to the connection to the vehicle’s electrical system.

IMPORTANT! The cable must not cross the calliper’s (2) attachment to the pad retainer (7) externally. Laying the cable across the pad retainer attachment in the calliper (2) may damage the cable! See figure.

Secure the PWI cable using cable ties (83) where necessary.
In cases where the PWI (79) is replaced:

Connect the vehicle wire connector to the PWI connector (79c) and secure the cable using cable ties (83) where necessary.

Transfer of pad retainer in the PWI plate

Dismantling

Fold out the PWI plate’s (79d) 4 lugs (A) for pad retainer (7) using a screwdriver and remove the pad retainer (7).

Assembly

Check that the PWI cable (79e) is in the correct position under the lugs (B) in the new PWI plate (79d). See figure.

Put the pad retainer (7) in place on the PWI plate (79d) and fold in the lugs (A) with a suitable plier.

IMPORTANT!

Do not pry/bend the lugs (B) their position ensures that the PWI cable (79e) is held in place without getting jammed, at the same time as they serve as spacers to the pad retainer (7)!

When fitting the pad retainer (7)/PWI (79) in the calliper (2), lay the PWI cable (79c) correctly so that it comes out on the same side in the PWI plate (79d) and then continues on to the connection to the vehicle’s electrical system.
IMPORTANT! The cable must not cross the calliper's (2) attachment to the pad retainer (7) externally laying the PWI cable (79e) across the pad retainer attachment in the calliper (2) may damage the PWI cable (79e)! See figure.
Pad Wear Sensor (PWS)

Removing PWS
Clean PWS (80), its connections and the surrounding area. Note the direction of the wire output from the sensor (80). To guarantee the correct functionality, it is important that the sensor keeps this position when re-installing.

Remove the vehicle’s connector from the PWS connector (80a). Remove any cable ties (83).

Remove bolt (81) using a 10 mm ring spanner. Pull out PWS (80) from the caliper housing (2a).

Be careful to ensure dirt does not enter the caliper housing (2a).

Clean the mounting surfaces in the caliper housing (2a) for PWS (80).

Avoid damaging the mounting surfaces!

IMPORTANT! It is important that the mounting surfaces in the caliper housing (2a) are free from dirt and are dry so that the O-rings (82) seal properly. If leaks occur, water and dirt may penetrate the caliper housing (2a) and cause malfunction!
IMPORTANT!

There are two types of PWS, type GILL and ABE. It is critical to the function of the PWS that these two types are not mixed during service. GILL is not compatible with ABE or vice-versa. Determine which version is on the vehicle and work accordingly.

ABE type PWS is have now superseded type GILL. A brake fitted with a GILL PWS can be updated with the ABE type PWS. But it is critical that the ABE puck is also added, not just the ABE PWS.

The ABE type sensors operate in conjunction with a Puck located in the assembly housing (2a). Therefore it can be identified by looking into the PWS location hole to see if a Puck is fitted. The Puck is a round plastic piece which press fits into position.

The puck is removed using an M12×90 bolt; this is screwed into the puck by hand (no tools required) and then pulled straight out of the assembly housing (2a). Ensure the bolt is fully threaded through the puck.

To replace the puck reverse the removal operation. Ensure that the puck is correctly seated in the hole and fully bottomed out.

A new puck should be fitted each time the ABE PWS is swapped or replaced.

The GILL type sensors operate without a Puck location in the assembly housing (2a). Therefore it can be identified by looking into the PWS location hole to see if a Puck is fitted. The Puck is a round plastic piece which press fits into the PWS hole in the assembly housing (2a).

A GILL type PWS has a thicker shaft than an ABE PWS and therefore it will not fit into the hole if the ABE PWS puck is fitted in position.
Fitting the PWS type ABE puck, if type GILL then skip this step to the Fitting the PWS type GILL and ABE step below.

A new puck should be fitted each time the ABE PWS is swapped or replaced.

The puck is fitted using an M12x90 bolt; screw the bolt into the puck by hand (no tools required) in the correct orientation, as per diagram. Ensure the bolt is fully threaded through the puck before fitting.

Ensure that the puck is correctly seated in the hole and fully bottomed out in the caliper housing (2a).

Fitting the PWS type GILL and ABE

Fit the two O-rings (82) in their slots on the PWS (80). Lubricate the O-rings (82) with grease P/N 89652.

Press the PWS (80) in place in the caliper housing (2a). Turn the PWS (80) until the cable/cable connection reaches the same position as when dismantled.

Ensure that the PWS (80) is fully pressed in to its position in/on the caliper housing (2a) before fitting the bolt (81)!

Secure with bolt (81). Tightening torque 10±1Nm.

Fit the vehicle’s connector with the PWS connector (80a). Check that both connectors are correctly fitted so that no contact fault/leaks can occur.

IMPORTANT! Contact faults/leaks may cause malfunction!

Check that the PWS (80) is working correctly following fitting. Observe the vehicle manufacturer’s instructions. Providing that the PWS (80) is fitted in its predetermined position, the PWS (80) does not need to be calibrated. Depending on the version, the vehicle system may need to be calibrated.

See vehicle manufacturer's instructions. See also manufacturer’s instructions for function control of the sensor system.
Fault-finding

NB Follow safety instructions! See the section entitled 'Safety'.
The vehicle manufacturer's instructions should also be followed!

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Action</th>
</tr>
</thead>
</table>
| **No or low braking effort** | - Replace the pads.
- Conduct initial setting + function checks.
- Replace the brake disc (See vehicle manufacturer's instructions.)
- Implement remedial measures according to vehicle manufacturer's instructions.
- Remove the drain plug located at the lowest point. |
| Are the pads worn? |
Is pad/disc clearance OK? |
Is the brake disc OK? |
Is air pressure in the brake chamber OK?
(Measure with a pressure guage at the brake chamber)
Has the drain plug been removed from the brake chamber housing? |
| **Brakes are binding/not releasing/have heat-damaged components/brake pads wear out quickly.** | See the vehicle manufacturer's instructions for information.
See the vehicle manufacturer's instructions for information.
Conduct initial setting + function checks.
Remove the brake pads, clean the pads, carrier and caliper.
Replace slide pins/bushings.
See the vehicle manufacturer's instructions for information.
Remove the drain plug located at the lowest point.
Adjust brake valves/carry out brake force adaptation
Refer also to vehicle manufacturer's instructions |
| Does brake pressure remain in the brake chamber when the brakes are released? |
Are all of the spring brake chambers released when the parking brake is off? |
Is pad/disc clearance OK? |
Can the pads move freely in the carrier? |
Is the caliper slide function OK? |
Is the wheel bearing clearance OK? |
Has one of the drain plugs been removed from the brake chamber housing? |
Has valve adjustment/brake force distribution been carried out correctly? |
| **The brakes pull to one side** | Replace the pads.
Conduct initial setting + function checks.
Remove the brake pads, clean the pads, carrier and caliper.
See the vehicle manufacturer's instructions for more information.
Remove the drain plug located at the lowest point. |
| Are the pads worn on one side? |
Is pad/disc clearance OK? |
Can the pads move freely in the carrier? |
Is there the same pressure in both brake chambers of the axle during braking?
(Measure with pressure guage at the brake chambers.) |
Has one of the drain plugs been removed from the brake chamber housing? |
| **Noise/vibrations from the brake** | Remove the brake pads, clean the pads, carrier and caliper.
See section entitled 'Replacing slide pins and bushings'.
See the vehicle manufacturer’s instructions for more information.
See the vehicle manufacturer’s instructions for more information. |
| Can the pads move freely in the carrier? |
Are the disc brake and its components fixed to axle as specified? |
Are there non-permitted cracks/grooves on the brake disc? |
Is the brake disc’s runout within specified parameters? |
Haldex Disc brakes

Component list

DB 19

DB 22

DB 22 LT

<table>
<thead>
<tr>
<th></th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disc brake assembly</td>
</tr>
<tr>
<td>2</td>
<td>Caliper assembly</td>
</tr>
<tr>
<td>2a</td>
<td>Caliper housing</td>
</tr>
<tr>
<td>2b</td>
<td>Caliper bridge</td>
</tr>
<tr>
<td>3</td>
<td>Carrier</td>
</tr>
<tr>
<td>4</td>
<td>Mechanism</td>
</tr>
<tr>
<td>5</td>
<td>Pad</td>
</tr>
<tr>
<td>6</td>
<td>Pad spring</td>
</tr>
<tr>
<td>7</td>
<td>Pad retainer</td>
</tr>
<tr>
<td>8</td>
<td>Bolt</td>
</tr>
<tr>
<td>9</td>
<td>Protection cap</td>
</tr>
<tr>
<td>10</td>
<td>Torx bolt</td>
</tr>
<tr>
<td>12</td>
<td>Bellows</td>
</tr>
<tr>
<td>13</td>
<td>Slide pin</td>
</tr>
<tr>
<td>14</td>
<td>Slide bearing</td>
</tr>
<tr>
<td>15</td>
<td>Plug</td>
</tr>
<tr>
<td>18</td>
<td>Torx bolt</td>
</tr>
<tr>
<td>22</td>
<td>Bolt</td>
</tr>
<tr>
<td>25</td>
<td>Brake chamber</td>
</tr>
<tr>
<td>26</td>
<td>Spring brake chamber</td>
</tr>
<tr>
<td>27</td>
<td>Nut</td>
</tr>
<tr>
<td>28</td>
<td>Thrust plate</td>
</tr>
<tr>
<td>29</td>
<td>Clip</td>
</tr>
<tr>
<td>30</td>
<td>Protection spring (optional)</td>
</tr>
<tr>
<td>32</td>
<td>Bellows</td>
</tr>
<tr>
<td>33</td>
<td>Cover</td>
</tr>
<tr>
<td>35</td>
<td>Adjustment screw</td>
</tr>
<tr>
<td>37</td>
<td>Bushing</td>
</tr>
<tr>
<td>38</td>
<td>Return spring</td>
</tr>
<tr>
<td>41</td>
<td>Cross bar</td>
</tr>
<tr>
<td>43</td>
<td>Needle bearing, outer</td>
</tr>
<tr>
<td>44</td>
<td>Lever</td>
</tr>
<tr>
<td>44a</td>
<td>Guide pin</td>
</tr>
<tr>
<td>48</td>
<td>Needle bearing, inner</td>
</tr>
<tr>
<td>48a</td>
<td>Slide bearing (inner)</td>
</tr>
<tr>
<td>50</td>
<td>Washer</td>
</tr>
<tr>
<td>53</td>
<td>Bearing sleeve</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>Adjuster</td>
</tr>
<tr>
<td>55</td>
<td>Adjustment shaft</td>
</tr>
<tr>
<td>59</td>
<td>Washer</td>
</tr>
<tr>
<td>60</td>
<td>Circlip</td>
</tr>
<tr>
<td>61</td>
<td>Clamp</td>
</tr>
<tr>
<td>62</td>
<td>Housing (adjuster)</td>
</tr>
<tr>
<td>63</td>
<td>Adjustment spring</td>
</tr>
<tr>
<td>64</td>
<td>Circlip (small)</td>
</tr>
<tr>
<td>64a</td>
<td>Circlip (large)</td>
</tr>
<tr>
<td>66</td>
<td>Friction spring (one-way)</td>
</tr>
<tr>
<td>67</td>
<td>Hub</td>
</tr>
<tr>
<td>68</td>
<td>Companion sleeve</td>
</tr>
<tr>
<td>69</td>
<td>Lip seal</td>
</tr>
<tr>
<td>71</td>
<td>Protection cup</td>
</tr>
<tr>
<td>73</td>
<td>Data plate</td>
</tr>
<tr>
<td>74</td>
<td>Adjustment sleeve (Driving)</td>
</tr>
<tr>
<td>75</td>
<td>Adjustment sleeve (Driven)</td>
</tr>
<tr>
<td>76</td>
<td>Pin</td>
</tr>
<tr>
<td>77</td>
<td>Gear wheel</td>
</tr>
<tr>
<td>78</td>
<td>Torx bolt</td>
</tr>
<tr>
<td>79</td>
<td>PWI</td>
</tr>
<tr>
<td>79a</td>
<td>PWI connectors</td>
</tr>
<tr>
<td>79b</td>
<td>PWI clamp for cable</td>
</tr>
<tr>
<td>79c</td>
<td>PWI wire connector</td>
</tr>
<tr>
<td>79d</td>
<td>PWI plate</td>
</tr>
<tr>
<td>79e</td>
<td>PWI cable</td>
</tr>
<tr>
<td>79f</td>
<td>PWI bracket</td>
</tr>
<tr>
<td>80</td>
<td>PWS</td>
</tr>
<tr>
<td>80a</td>
<td>PWS connector</td>
</tr>
<tr>
<td>80b</td>
<td>PWS Puck</td>
</tr>
<tr>
<td>81</td>
<td>Bolt</td>
</tr>
<tr>
<td>82</td>
<td>O-ring</td>
</tr>
<tr>
<td>83</td>
<td>Cable ties/Straps</td>
</tr>
<tr>
<td>84</td>
<td>Synchronization plate</td>
</tr>
<tr>
<td>85</td>
<td>Indicator pin</td>
</tr>
<tr>
<td>86</td>
<td>Pin</td>
</tr>
</tbody>
</table>
Haldex (www.haldex.com), headquartered in Stockholm, Sweden, is a provider of proprietary and innovative solutions to the global vehicle industry, with focus on products in vehicles that enhance safety, environment and vehicle dynamics.

Haldex is listed on the Stockholm Stock Exchange. Haldex has a yearly turnover of close to 6.9 billion SEK and employs 2,100 people.

©2011, Haldex AB. This material may contain Haldex trademarks and third party trademarks, trade names, corporate logos, graphics and emblems which are the property of their respective companies. The contents of this document may not be copied, distributed, adapted or displayed for commercial purposes or otherwise without prior written consent from Haldex.